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ABSTRACT

This paper considers the robust estimation of the mean and covariance matrix for incomplete multi-
variate observations with the monotone missing-data pattern. First, we develop two efficient numerical
algorithms for the existing robust estimator for the monotone incomplete data, i.e., the maximum likeli-
hood (ML) estimator assuming the samples are from a Student’s t-distribution. The proposed algorithms
can be more than one order of magnitude faster than the existing algorithms. Then, to deal with the
unreliability and the inapplicability of the Student’s t ML estimator when the number of samples is rela-
tively small compared to the dimension of parameters, we propose a regularized robust estimator, which
is defined as the maximizer of a penalized log-likelihood. The penalty term is constructed with a prior
target as its global maximizer, towards which the estimator will shrink the mean and covariance matrix.
In addition, two numerical algorithms are derived for the regularized estimator. Numerical simulations
show the fast convergence rates of the proposed algorithms and the good estimation accuracy of the

proposed regularized estimator.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Estimating the mean and covariance matrix is a fundamental
problem in statistical signal processing related fields. A wide range
of applications, such as noise attenuation in image processing [1],
adaptive beamforming in communications [2], and portfolio con-
struction in finance [3], all depend on the accurate estimation of
the mean and covariance matrix. A common approach to estimate
these quantities is to use a sample average. However, in many
practical applications, the samples may be incomplete, i.e., contain-
ing missing values. For example, in astronomical, meteorological,
or satellite-based applications, weather or other conditions may
disturb sample taking schemes, which will lead to missing data
problems [4]. In wireless communications, sensor failure or noise
can result in the loss of data [5,6]. In financial markets, missing
data occurs when the stocks of interest have various lengths of
available historical data. Under such missing data scenarios, the
traditional sample average method to estimate the mean and co-
variance matrix is no longer applicable, and efficient approaches
are needed.

One simple way to estimate the mean and covariance matrix
for incomplete data is via maximum likelihood (ML) estimation as-
suming that the samples are independent and identically drawn
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from a Gaussian distribution [7,8]. Since, for complete data, it is
known that the sample mean and sample covariance matrix co-
incide with the Gaussian maximum likelihood estimates, this ex-
tension to incomplete data is natural. However, in practice, the
distribution of the data in many applications has a heavier tail
than the Gaussian distribution, either due to the intrinsic property
of the application, e.g., in financial engineering [9], or the exis-
tence of outliers, e.g., samples corrupted by impulsive noise [10].
For these cases, the Gaussian ML estimator will give completely
unreliable estimates, and one may seek instead a robust ML esti-
mator assuming that the underlying distribution is some heavy-
tailed elliptical distribution, such as the Student’s t-distribution.
Little proposed in [11] to use the Student’s t-distribution with a
known degree of freedom v as the underlying distribution to es-
timate the mean and covariance matrix for data with missing val-
ues. Later, a more general case of the Student’s t-distribution with
unknown v was considered in [12,13]. The Student’s t ML esti-
mator can provide reliable estimates of mean and covariance ma-
trix even if erroneous observations occur or the samples follow a
heavy-tailed distribution. To get the ML estimates, the expectation-
maximization (EM) algorithm was employed. Although the EM al-
gorithm is a popular tool, it has been criticized for its slow conver-
gence speed [14,15]. Thus, various extensions of the EM algorithm,
e.g., the expectation/conditional maximization either (ECME) algo-
rithm [16,17], and the parameter-expanded EM (PX-EM) approach
[15], have been proposed to accelerate its convergence.
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Fig. 1. Incomplete data set with the monotone missing-data pattern. The blue-filled
rectangles are the observed values, and the blank rectangles are missing values. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Another issue that often occurs in contemporary applications is
the shortage of samples compared to the dimension of the param-
eters being estimated, like may happen in bioinformatics, finan-
cial engineering, and wireless communications [18-21]. When the
number of samples is relatively small compared to the dimension
of the parameters to be estimated, the information provided by
the samples is insufficient for an accurate statistical inference. In
addition, it is obvious that the sample covariance will be singular
when n <p. The above robust estimator has the same drawback.
Although there have been significant efforts to develop method-
ologies for mean and covariance estimation from incomplete data
in the small sample size regime [22-24], they are all based on
the traditional Gaussian distribution assumptions, and less atten-
tion has been placed on robust estimation.

This paper focuses on the robust estimation of mean and co-
variance matrix for incomplete data with the monotone missing-
data pattern (see Fig. 1 for an illustration of the pattern). Accord-
ing to which values are observed, and which values are missing,
the incomplete data sets can be classified into different missing-
data patterns. The monotone missing-data pattern is a kind of
pattern that appears frequently in real-world applications, where
observations are missing after some point possibly different for
each variable. For example, in longitudinal studies, the dropout of
some subjects before the end of a study will lead to the monotone
missing-data pattern [13], while in wireless communications, the
failure of some of the sensors before measurements are completed
can also result in this kind of incomplete data [6]. In financial mar-
kets, assets become part of the market at different times through
initial public offerings (IPOs), which leads to a reversed version of
this pattern as well [25,26]. Our main contributions in this paper
are:

1. We investigate the existing robust estimator of mean and
covariance matrix for monotone incomplete data sets, and
develop two more efficient algorithms, which can be more
than one order of magnitude faster than the existing PX-
ECME algorithm in [13], based on the general minorization-
maximization (MM) framework.

2. In order to deal with the “large p small n” situation, for
which the existing robust estimator will provide unreliable
estimates or may even not exist, we propose a regularized
robust estimator of mean and covariance matrix, defined as
the maximizer of a penalized likelihood function. The pro-
posed estimator shrinks the mean and covariance matrix to-
wards a prior target, and can provide reliable estimates even
when the sample size is small relative to the problem di-
mension.

3. We design two efficient algorithms for this regularized ro-
bust estimator. Simulations on both synthetic data and real
data show that the proposed regularized estimator can pro-

vide more accurate estimates than the existing robust esti-
mators in the small sample size regime.

The remainder of this paper is organized as follows.
Section 2 explains the concept of the monotone missing-data
pattern and reviews the existing robust estimator. Section 5.1 in-
troduces the proposed regularized robust estimator and gives the
problem formulation. Section 4 is devoted to the introduction of
the MM framework and the derivation of the proposed algorithms
for the existing robust estimator. Section 5 develops two algo-
rithms for proposed regularized robust estimator. In Section 6,
simulations results are provided. Section 7 concludes the paper.

Notation: RP stands for the p-dimensional real-valued vector
space. S¥, stands for the set of symmetric positive definite p x p
matrices, which is a closed cone in RP. The superscripts (-)~! and
()T denote the matrix inverse and transpose operator, respectively.
E(-) and Cov(-) denote the mathematical expectation and covari-
ance operator, respectively. det(-) and Tr(-) denote the matrix de-
terminant and trace, respectively. ¥>~0 means that ¥ is a symmet-
ric positive definite matrix.

2. Robust estimation for monotone incomplete data

In this section, we introduce the monotone missing-data pat-
tern, and review the existing robust estimation approach for mean
and covariance from monotone incomplete data.

2.1. Monotone missing - data pattern

Suppose we collect n independent samples of a p-dimensional
random vector y in an nxp matrix Y = {y;= ¥i1.Vi2.---»
yi.p);i: 1,2,...,n}. We say the data set follows the monotone
missing-data pattern when the incomplete samples can be sorted
into K different groups such that, in the first group containing sam-
plesi=1,...,nq, only the first p; components are observed; more
generally, in the kth group containing samples i=n,_; +1,...,1n,
only the first p, components are observed [13]:

1), (€Y (€Y P .
Vit Yizo - Yipe - Yip, fori=1,...,nq;
K Lk K :
vy for i =my +1.....ng
K K .
yi(J),...,yEPi fori=ngq+1,...,0k

where p=p; >---> pxand 0 =ng < ny < --- < ng = n. The super-
script represents the group that incomplete sample belongs to. We
denote by y;ops and y;nyis the observed values and missing val-
ues of the sample y; such that y; = (¥; obs, ¥i.mis)- The missing-data
mechanism is assumed to be ignorable, i.e., the missingness does
not depend on values of the missing data [13]. The examples given
in the introduction can all be considered to have this missing-data
mechanism. Given the incomplete monotone data set Y, we are in-
terested in the robust estimation of mean and covariance matrix
for the random variable y. The estimation accuracy increases with
the increass of number of observed values (ZL] (N — Mg_1) P)-

2.2. Robust estimation of mean and covariance matrix

The Student’s t distribution based ML estimator is a widely used
robust estimator for mean and covariance matrix [12,27]. Suppose
the random variable y follows a Student’s t-distribution: y~ t,(u,
Y, v), where p € RP is the location parameter, X ESer is the
shape matrix, and v>0 is the number of degrees of freedom.
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Then, for v > 2, the mean and covariance matrix of y are g and
R= ;% %, respectively!.

When there are no missing values, i.e., we have a complete data
set {y;}, the ML estimation problem for u, X, and v, is

maximize [({y;}|/t, X, V) (1)
nX~0,v>v-

where
V4D o _
I{yi} i, Z,v) = —Tp Y log(v+ Wi— ) (i m)
i=1

n ny
5 log (det (X)) + 5 log (v)

o (r(*37)
—nlog (F(%)) f%log(n). (2)

with I'(-) being the gamma function. After obtaining the ML es-
timates ft, ¥ and D, the estimates for the mean and covariance
matrix are i and R = %253 respectively.

Setting the gradient of I({y;}|, X, v) to zero, we get

D+p ¢ Vi— i
> T . =0, (3)

=3 (4)

The estimates f and % can be interpreted as the weighted
sample averages. The weights are inversely proportional to (y; —

ﬂ)Tﬁ_l(yi — fL), which means they decrease as the samples get
far away from the center. This property indicates this estimator
is more robust to outliers compared with the (unweighted) sam-
ple average, which is equivalent to the ML estimate assuming a
Gaussian underlying distribution. The Student’s t ML estimator in
(3) and (4) belongs to the class of M-estimators, whose robustness
properties have been studied in [27].

When the data set is incomplete and follows the monotone
missing-data pattern, the ML estimation problem is much more

D RCIMCES 0 vm) —E
Q(’L n P({E}-{Yf.mis}\ll“). 2O 0O {yions}

where
ny
he(p, X, v) = Z ]ng(yi.(Pk)|l'l'(Pk)’ DAPRE ‘))
i=ny_;+1
3 T
v+
= - zpk > 10g<1’+ (Yi,(m —I‘~<pk>)
i=ny_1+1
-1
x(Z(p) (Yi,um - ﬂ(m)))
N — Mk_q

- = log (det (Zp,)))

+ (ny — nk—l){% log (v) + log (F<#>>

(D) Bew] o

with y; ¢,y denoting the first p;, components of y;.
2.3. Existing algorithm

The above ML estimation problem (6) is too complicated to
be solved directly. Interestingly, the Student’s t-distribution can be
written as a mixture of Gaussian distributions:

vil, X, 1 ~ Np(p, /), (8)

Model 01 : 7, ~ Gamma(v/2, v/2).

Therefore, in [17], the authors proposed to regard both {r;} and
{Vimis} as unobserved latent data, and use the ECME algorithm to
solve the robust estimation problem iteratively. The ECME algo-
rithm is a variant of the EM algorithm. At iteration t + 1, it updates
the parameters according to

([L(H']), E(”])) = arg max Q([L, T O p®, 2O, u“)), 9)
(1, %)

and

v([+l) = arg maxl<Y|u<f“), E(Hl)’ l)), (10)

v=v-

where Q(u,X, vO|u(®), O, v(©) s the expectation of the complete
data log-likelihood with respect to the posterior distribution p({z;},
{Yi, mis}lﬂ/(t)- 2:(t)- V(t)- {Yi, obs}):

)(l({Yz:obs}a {Vimis}: {Ti} e, Z, v®))

= /1({yi,obs}s {yi,mis}’ {Ti}|”~ E’ v(t))p<{7:i}’ {Yi,mis}|”'([)’ E(t)’ V(t)’ {M’.obs})dﬁ ~-~dfndyl.mis . -~dyn,mis

1 _ _ 1 _ n
=3 {—jTr(E(riyiyiT)E N+ u"EE(my) - E[LTE 1[LE(‘L’,~)} — 5 log (det (X)) + const. (11)
i1

complicated. Let us denote by Yoo the vector of the first p, com-
ponents of y, and by R the vector of the first p, components
of m, and by X, the upper-left py x p; submatrix of X. The
marginal distribution of Yp,) is

Yoo ~ toe (IL(pk)’ Xp): V>‘ (5)

Therefore, given the monotone data set Y, the ML estimation prob-
lem for u, ¥ and v can be formulated as follows:

K
maximize (Y@, E, v) = ghk(ﬂ, z, v), (6)

1 In practice, when we use Student’s t ML estimator to estimate mean and covari-
ance, we do not want v to be close to 2, since the covariance will blow up. Thus,
in this paper we let v > v—, where v= = 2.01.

The expectation operations in (11) are all with respect to the
posterior distribution p({z;}, {¥imis I, T, vO, {y; ops}). For sim-
plicity of notations, we omit the subscripts of these expectations.
The update (@1, TV can be expressed as

(t+1) _ i E(Tiyi) 12
# YL E(T) (12)

and
n

T = % Z {E(TiYiyiT) - ZE(TiYi)(IL(Hl))T
i=1

_,_E(-,;i)ﬂ(wl)(ﬂ(tﬂ))T}. (13)

Since the convergence speed of the EM type algorithms is typ-
ically very slow, the authors of [15] introduced the parameter
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expansion-EM (PX-EM) method to accelerate EM-based algorithms,
which leads to the benchmark, the PX-ECME algorithm in [13]. In-
terested reader may refer to Sections 8.5.3 and 12.3 of [13] for de-
tails.

3. Regularized robust estimation for monotone incomplete
data

When the number of samples is sufficient, the above robust es-
timator can provide accurate estimates. However, in some practi-
cal applications, the number of samples is relatively small com-
pared to the number of the parameters. In such cases, the above
robust estimator will give unreliable estimates, and the algorithm
designed for the estimator may even fail to converge. Motivated
by the idea in [20,21], we propose to regularize the above estima-
tor by shrinking the estimator to a prior target (t, T). This method
not only provides a way to incorporate some prior information into
the estimator, but also helps stabilize the estimator in small sam-
ple size regime [21].

The proposed regularized robust estimation problem can be ex-
pressed as follows:

maximize (Y|, X, v) —au(p, X, v), (14)
o~ Z-0,v>v-

where « is a nonnegative parameter, and u(g, X, v) is a penalty
function, which increases when the mean and covariance g and
%E deviate from the prior mean and covariance (t, T). Let us de-
note the objective function by Isink(Y|u, X, v). Here we adopt a
widely used penalty, the Kullback-Leibler (KL) divergence between
the normal distributions AV'(t,T) and NV (., ;%5 X)[21,28]:

u(p, X, v) = DKL(N(L T)||N<IL7 l)‘)fz):))

- %(t—u)T(ﬁz)f](t—u)

+;Tr((v')2):)_lT>

p 1 1 v
-5 jlogdet(T) + jlogdet(mz). (15)

The following proposition indicates that u(u, X, v) is a proper
penalty function.

Proposition 1. For any p e RP, X €SP, and v > v, it follows that
u(p, X, v)>0with the equality achieved if and only if u =t and
VY _T
V-2 .

Proof. The KL divergence is always nonnegative, and is equal to
zero if and only if the two distributions are identical [29]. O

4. Algorithms for robust estimation

In this section, we develop two algorithms faster than the
benchmark PX-ECME algorithm for the robust estimation problem
(6) based on the minorization-maximization (MM) framework. Let
us first give a brief introduction to the MM framework.

4.1. Minorization-Maximization framework

Consider the following optimization problem:
maximize f(x)
subject to X € X, (16)

where X is a closed convex set in RP, and f: X — R is a contin-
uous function. When the problem is too complicated to be solved
directly, the MM framework circumvents such a difficulty by solv-
ing a sequence of simpler optimization problems [30,31].

At iteration t+1, the MM framework first find a minoriz-
ing function g(x|x()) for fix), which satisfies the following condi-
tions:

g(x(t)lx(t)) — f(x(f))’
g(xxV) < f(x), Vx € X,
g’(x(ﬂ; d|x<f)) _ f/(x(t); d), vx© +de x. (17)

with f(x(9; d) and g’(x(); d|x(V) standing for the directional deriva-
tive. In other words, the minorizing function g(x|x()) is a global
lower bound for f(x) and coincides with f{x) at x(*). Then the MM
framework updates x as

x*D = argmax g(x|x®). (18)
XeX

We can easily see f(x@tD) > f(x®). It is proved in [31] that any

limit point of the sequence {x(}} is a stationary point of the origi-

nal problem (16).

The idea of minorization and maximization can also be applied
blockwise, i.e.,, we can divide the variables into different blocks,
and conduct the minorization and maximization for each block of
variables, with other blocks of variables fixed in every iteration.

The key to the success of MM lies in constructing the minoriz-
ing function. On the one hand, to achieve a fast convergence speed,
a minorizing function that follows the shape of the objective func-
tion is desirable. On the other hand, it should be simple to maxi-
mize so that the computational cost per iteration is low. It is not
easy to find a good trade-off between these two opposite targets
[21].

Interestingly, the EM algorithm is actually a special case of the
MM, and the ECME algorithm is a special case of the block MM
[30]. More specifically, denote the observed data by X, the unob-
served latent variable by Z, the parameter by #, and the expecta-
tion of the complete data log-likelihood by Q(#|6")). The minoriz-
ing function for the observed data log-likelihood I(X|#) in the EM
algorithm is

g<a|o<f>) _ Q<a|o<f>) _ Q<a<f>|o“>) + 1(xw“>>, (19)

which is the sum of Q(#|#)) and a constant. In addition, the fol-
lowing proposition indicates that, when applying the EM algo-
rithm, if we can consider fewer variables as latent data, the re-
sulting minorizing function will be a tighter approximation of the
original log-likelihood.

Propeosition 2. For any two different unobserved latent variables Z,
and Z,, the minorizing functions satisfy

g2,(016°) = g2,2,(016“). (20)

where gz, (0|0([)) is the resulting minorizing function with Z, consid-

ered as latent variable, and gz,7, (0|0([)) is the resulting minorizing
function with both Z; and Z, considered as latent variables.

Proof. See Appendix A.l. O

4.2. Robust estimation via block MM

The objective function of the robust estimation problem (6) is
very complicated. It is difficult to apply MM for all variables jointly.
Therefore, we partition the three variables into two blocks: (u, X)
as one block, and v as another block. Then we apply block MM to
solve this problem iteratively. At iteration t + 1, we first conduct
the minorization and maximization for g and X, with v fixed as
v®, and then optimize v, with g and ¥ fixed as p ¢+ and T,
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The optimization of v is easy to solve. If we fix the values of p
and X as p@ and TV the objective function is

Mg

> -

k=1 i=n;_;+1

+ i(nk — 1) log (F<v —;pk))

k=1
+n7vlog(v) —nlog (F(%)) + const., (21)

where

1
(t+1) _ (t+1) (t+1) (t+1)
5" (y, k0 = Py ) <E(pt> ) (yfﬁ(m) Koy ) (22)

with k = arg,(n,_; <i<ng). It is a function of a scalar variable,
and the maximizer v can be found by a one-dimensional
search.

In the following, we concentrate on the minorization and max-
imization for w and X, which will take some effort. With the v
fixed as v(), the objective function is:

I(Ylp. = v©) = i{_%

l(Y“L(”l), D v) log (U +3i(f+1))

v+pk
2

ny
> log(v(‘) +

k=1 i=n,_1+1
T -1
(Yupk) - ﬂ(pk>> (Zeo) (Yupk) - ﬂ(pk)))
My — Ny
_ ‘# log det (Z(pk))} -+ const. (23)

By the concavity of the log(-), we have
1

log (x) < x—(x —Xp) + log (xo). (24)
0

Therefore, at point (u(t), X, p(©)
® ! -1
log <V + (Vz‘,(pk) - ﬂ(pk)> ()3<pk>) <Yi,<pk> - M(po))
t T -1
VO + (Yupk) - M<pk>) (Zwn) (Yz:(pk) - ﬂ(m)
<

= T -1
(t) ) ®
VOt (yt(pk) - l‘(pw) (Zw) (yi’("’<) - ’L(”k))

), we have

+ const.,

(25)
and then I(Y|, X, v(®) is minorized by

3

>y -l

k=1 "i=ng_+1

T
g(p. Zp®, O HO) = (M D) ”(po)

-1 N—Ng_q
(Zen) <y;‘,(pk) - IL(m) - —— — logdet ()3(pk))} + const.,

(26)
where

p®
w® = + Pk

1 T !
® ® ©
v+ (yi,(pk) - "“(m) (Z(pm) (yi’(p/‘) - M(m)

with k = arg,(n,_; <i<ny).

The minorizing function (26) is too complicated to be maxi-
mized directly. But after applying the following Lemma 1 [32], we
successfully reparameterize g(u, X|p®, O, v(®)) into a simpler
form in Proposition 3, whose maximizer is easier to obtain.

Lemma 1. Given the positive definite matrix ¥ and the upper trian-
gular Cholesky decomposition of its inverse

> ' = HH, (28)

where H is an upper triangular matrix with positive diagonal entries,
the upper triangular Cholesky decomposition for (% J-))*1 is

-1 T
(Zp) =Hy(Hp) (29)
where X; is the upper left j x j submatrix of %, and H;) is the upper
left j x j submatrix of H.

Proposition 3. If we replace X in (26) with (HHT)~1, the function
g(u, Tp®,zO, v(”) can be reparameterized as

g(”l’7 H|IL(t), E(t)7 v(t))

- _% (u. -6Y (H))TB@ (H) (;L -6 (H))

Z hTS(t)h + Z log (h;

where, forjzl, 2, ...,
of the jth column of H,

k(j) = a,rg(pkq <Jj=<p. (31)
K

j) M) + const., (30)

p, h; is the vector of the first j components

the weighted covariance of y; (the first j components) in the first
k(j) groups

M(j)

s) = Zw(“(v; o =3) i -57) (32)
0 M) =HT(h]y\" hiyy. ... hly <f>) , (33)
and
B® (H) = HDiag(Q", @, ..., QW)HT, (34)
with the weighted sample mean
o _ it oY)
y; = nkm © (35)
ZI 1 a)

and

. Tie(j) .
Q) =3 . (36)

Proof. See Appendix A.2. O

The reparameterized function g(p, H|p(®, X, v®) still looks
nontrivial. However, by applying some tricks, we obtain its closed-
form maximizer, and thus, achieve the closed-form maximizer for
glp, Z|pn®, X0 1) successfully. The closed-form maximizer is
given next in Proposition 4.

Proposition 4. The minorizing function (26) is maximized by

_ T
p = (H(“”) T[(hgm))Tﬂr)’ (hg+1))7y!(]t>] (37)
and
¥ (1) _ (H(t+l)(H(t+l))T>_], (38)

where, for j=1,2,..., p,
T

(t+1) _ (y© 3
heD = (1) (0. 0y ) (39)

with Lj(.t) (L;”)T being the lower triangular Cholesky decomposition of
S(.t) ; e,

S(t) L(t) (L(t)) (40)
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Proof. See Appendix A3. O

Finally, the robust estimation algorithm developed based on the
block MM framework is summarized in Algorithm 1.

Algorithm 1 Fast robust estimation via block MM (FREBMM).

1) Initialize £©@ as an arbitrarypositive definite matrix, #(® asan
arbitrary vector, and v(® as an arbitrary number(v(o) > v—).
2) Iterate

T T_ T_ 17
RED = (HED) [(hgf“)) V... (hy'") yﬁ,] , (41)
-
R _ (H([+l)(H(t+l))T) 7 (42)
and
VD = argmax | (Y|p®D, 2D ), (43)

v=>v-
where HD is an upper triangular matrixwith the first j com-
ponents of its j-th column h}t“)given by (39), and 95015 the
weighted sample mean given by (35).

4.3. Minorizing functions comparison and acceleration

Actually, Algorithm 1 can also be regarded as an implemen-
tation of the ECME algorithm. But different from the previous
ECME algorithm based on Model O1, which regards both the
weights {7;} of the mixture and missing data {y; s} as latent data,
Algorithm 1 is based on the following complete data model:

M’,obs“"s X T~ Npkm (”’(Pk(i))’ Z(Pku))/ri)’ (44)

Model 02 :
ode T; ~ Gamma(v/2,v/2).

which only considers {7;} as latent data. The resulting expectation
of the complete data log-likelihood is

Q1 T OO, 20 00)
)(l({yi,obs}s {THm Z,v0))

- Ep({ri}’“L([)~Z(”vvm’{Yi,obs}
= [ 1310} (IR B 010)

p((TIRO.E 0O, (Vi) JaTr .. T (45)

The posterior distribution of t; is

4ln®, O v O {y; obs} ~ Gamma(a, b) (46)
with
»® 4
o= TP (47)
2
and

T -1
t ) _3® () ) _y®
v® o+ (y’-(Pk(il) ,L(pk(i))) (Z(pk(i))) (y’~(Pk(i)) M(pk(i)))

b= .
2
(48)
It is easy to prove that it is equivalent to the minorizing function
(26).

According to Proposition 2, our minorizing function follows the
shape of the original function better than that of ECME(O1) due to
the fewer latent variables. To illustrate this, in Fig. 2, we show an
example of the minorizing functions of the FREBMM and ECME al-
gorithms along the line wq, given a randomly generated monotone

x10°
:

107 Objective function

— — —Minorizing function of FREMM (proposed)
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Fig. 2. Minorizing functions comparison.

incomplete data set with p =100, n =500, and k = 5. The mi-
norizing function of the FREBMM algorithm is obviously a tighter
approximation of the objective function. Therefore, we can expect
that the proposed algorithm has a faster convergence rate than the
ECME(O1) algorithm.

In addition, similar to the case of the PX-ECME(O1) [13,15], the
proposed FREBMM algorithm can also be further accelerated using
the PX-EM method by embedding Model 02 within the following
expanded model:

Viobs| " 7, Ty ~ Nowi (”l?l’k(i))’ E?Pk(n)/ti)’
T; ~ BGamma(v/2,v/2).

Model X2 :

(49)

where u* e RP, T*es?,, and B>0. The resulting accelerated
scheme is given in Algorithm 2. The only difference is in (51).

Algorithm 2 PX-FREBMM.

1) Initialize £©@ as an arbitrarypositive definite matrix, £(© asan
arbitrary vector, and v© as an arbitrary number(v(°> > v—).
2) Iterate

-T T_ T_ 7
O = (HOO) T (0) 30 ) 0] G0
e+ 1 (H(H])(H(H]))T)q (51)
Z?:] (1)1-([)
and
VD = argmax (Y| p @D, D ), (52)
v=v-

where HD is an upper triangular matrixwith the first j compo-
nents of its jth column h;.t”)given by (39), and j/j.f)is the weighted

sample mean given by (35).

Remark 1. In this paper, we assume that the samples are drawn
independently from a Student’s t-distribution. But actually the
same idea and tricks can be applied to the ML estimation of the
parameters of other Gaussian mixture distributions from mono-
tone incomplete data. Let y;|p, X, 7; ~;;4 Np(®. X/7;), where {7;}
are unobserved i.i.d. positive scalar random variables with known
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probability functions. To obtain the ML estimates for u and X,
we can regard only {7;} as latent data and derive the closed-form
maximizer for the expected complete data log-likelihood function
using the tricks in Propositions 3 and 4.

4.4. Computational cost

Now we compare the computational complexity of the pro-
posed FREBMM and PX-FREBMM algorithms with that of the ex-
isting ECME and PX-ECME algorithms. The per-iteration computa-
tional cost comes from two sources: the computation of u+1) and
> and the one-dimensional search for v®+1 . Since the up-
date method for v(+1) is the same in all the four algorithms, here
we only consider the computational cost for g+ and »D  For
the proposed FREBMM and PX-FREBMM algorithms, we need to
first compute {S;t)}, and then do the Cholesky decomposition for
each S?). The cost for computing {S;.t)} is 0L P} (g — 1)),
and the computational cost for all the Cholesky decomposition’s
is O(p*). The total computational cost is O(p*+ YK, p; (. —
ng_1)). For the ECME and PX-EM algorithms, the dominating
cost is the computation of many expectations. The resulting per-
iteration computational cost for is @ (np? + Zﬁ] (p;’; + ppi) (N —

M) + X0 PP Pe)-

5. Algorithms for regularized robust estimation

In this section, we derive two algorithms for the proposed reg-
ularized robust estimator (14) based on the block MM framework.

5.1. Regularized robust estimation via block MM

Recall the objective function of the regularized robust estima-
tion problem (14) is

IShri"k(Y“L, T V)= I(Y“L, Y, V) —au(p, X, v). (53)

Similarly, we exploit the block MM framework to solve it. At it-
eration t + 1, we first update g and X, with v fixed as v(¥), and
then update v, with p and ¥ fixed as @+ and TP, The op-
timization of v can be solved by one-dimensional search. For the
optimization of g and X, according to (9) and (19), we have

[(Ylp, 20©) = Q(,L, 0O |p® 3O, v(r))

+[(y|u(t)’ O, U(t)) _ Q(u(”, CIMGIMOIS 0 u<f>),
(54)
therefore, at (u(, X0 p®) phrinkcy| -3 1(0)) s minorized by
gﬁhrink<ﬂ’ Tp®, O, 1,(t))

= Q(u, D IRCIITIONS S v(f)) —au(p, =, v®) + const.

1 1
= Z{_iTr(E(fiYiy;r)zi]) +u"EE(Tyy) - EILTEAILE(E')}
i=1
1

n o rf v® -
—ilog(det(Z)) - j(t—ﬂ) (1)(0—22) (t—m)

-1
o p® o p®
—2Tr<<v(t)_22> T) -3 log det (\)(0_22) + const.

(55)

Setting the gradient of g5tk (p, X|pu®, *® v®) to zero gives
the closed-form update (56) and (57) in Algorithm 3.

Algorithm 3
(RREBMM).

1) Initialize £©@ as an arbitrarypositive definite matrix, #(© asan
arbitrary vector, and v(® as an arbitrary number(v(o) > v—).
2) Iterate

Regularized robust estimation via block MM

U(t) -2

@y — XL E@m) XL E() NG t 56
* L ()02 YR S E(q)sa st o
1) n 1 n T
(t+1) _ wvl) _ V. (t+1)
)X “nxan 2 {E(TzY:Y,') 2E(le1)(llv )
+E@RED ()]
a (v -2 O T
_ oy (t+1) _ oy 1)
ST S - k) (- pe)
(57)
and
pE) — arg max lShrink(YllL(Hl), E(Hl), U), (58)
v>p-

where the expectations can be computed based on the method in
[17].

We can see the update is a linear combination of the estimates
from the samples and target. When « = 0, the shrinkage estimator
reduces to the previous nonshrinkage estimator (see Section 2.3),
and when o — +o0, the shrinkage estimator reduces to the triv-

ial case yielding the prior target. The term ;%5 %T + ”Szgz (t—

pEDY(t — pED)T) helps to make TP well conditioned, and
thus, allows continuation of the iterative process.

Even better, from (26), at (u(), X0, (1)), pshrinkcy| % p(0) s
also minorized by

gszhri"k(ﬂ, 5|, £, v(r)) _ g(”” Tp®, 2O, v(r))

—au(p, ,v®) + const.

K ny
1 -
= Z{ > —gwft)(yupk) —IL(m)T(E(pk)) 1(Yi,<pk> )

k=1 "i=n_;+1

1
Ny — Ni_q o T v®
,Tlogdet(z(pk))}fj(tfu) (\)(0—22 t—p)

-1
o p® o p©®
_2Tr<<v(f)—22> T) -3 log det (1)(0—2):> + const.
(59)

Compared with the minorizing function g§hink —gshrink js 3
tighter approximation of Fhrink(y|u, X, v(®), since g(u, X|p),
> vy is a tighter approximation of I(Y|u, X, v(®) than
the minorizing function in the ECME(O1). On the other hand,
ghrink (g %[ u®, 2O 1©) is so complicated that we cannot max-
imize it directly. Luckily, after reparameterization using Lemma 1,
we can derive a closed-form maximizer. The maximizer is given
in Proposition 5, and the resulting algorithm is summarized in
Algorithm 4. Similar to Algorithm 1, Algorithms 3 and 4 can also
be considered as penalized ECME algorithms.
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Algorithm 4 Fast regularized robust estimation via block MM (FR-
REBMM).

1) Initialize *© as an arbitrarypositive definite matrix, #(© asan
arbitrary vector, and v(® as an arbitrary number(v(o) > v‘).
2) Iterate

T T~ Toy]"
pED = (HOD) [(hgm)) O, () yét)] ’ (60)
y (1) _ (H(M)(H([H))T)*]’ (61)
and
VD = arg max [ink (Y| D x5 GD ), (62)

V=v-

where H®D is an upper triangular matrixwith the first j compo-
nents of its jth column h;”l)given by (66), ?;t) given by (35).

Proposition 5. The minorizing function (26) is maximized by

p = (H<t+1>)4[(hgwu)@gr), o, (B ?2‘)] (63)
and

G <H<t+1>(H<f+1>)T)_], (64)
where, for j=1,2,..., p,

SO _ @y} + et (65)
j Q(r) +oto-2

and

B = ((9) (O, 0, +a)T, (66)

with L;t) (L;t))T being the lower triangular Cholesky decomposition for

p® _ 2
G
+S; o To-

O_200) (g®) o)
so_ @ ~t0) () ~ty)’
J Q(f)+av(f) -2

p©)

(67)
Proof. See Appendix A4. O

5.2. Computational cost

The introduction of the regularization term does not lead
to much additional computational cost. For the RREBMM algo-
rithm, the per-iteration computational cost for w1 and TV
is O(np? + Y15 (3 + ppi) (e — mi_q) + L4y p?py), the same with
the ECME(O1). For FRREBMM algorithm, the per-iteration com-
putational cost is O(p* + ZL pz(n,< —1y_1)), the same with the
FREBMM algorithm.

6. Simulations

To show the performance of the proposed regularized ro-
bust estimator and the proposed algorithms, we present some
numerical experimental results in this section. All experiments
were conducted on a PC with a 3.20GHz i5-4570 CPU and 8 GB
RAM. The estimation performance is quantified by the normalized

i 2
mean square errors (NMSEs) defined as NMSE,, = W and
true

E[R-R
EIR Rirue I b3 are the estimates for

”Rtrue ”;2:

NMSEg = where fi and R = 5

mean and covariance matrix. In all the synthetic data simulations,
the samples are drawn from the heavy-tailed distribution tp(ftrye,
Yitrue, Verue), Where e = 1, Zirge is a Toeplitz covariance matrix
of the form (Etme)U = 0.8/, and Vrue = 3. The true covariance

is Rerue = Vi Vire <5 Ttrue-

6.1. Comparison of the algorithms for robust estimation

In this part, we compare the proposed FREBMM algorithm and
its variant PX-FREBMM (i.e., Algorithms 1 and 2) with the exist-
ing ECME and PX-ECME algorithms in [13,16] for the robust es-
timation of the mean and covariance matrix from the monotone
incomplete data. The stopping criteria for all the algorithms are
IECD 20l _ g4 1@V -nOly _qg-4 gpg LODvOL g4

1= 1l 11 ©1ll v©]
First, we test the performance of the four algorithms on a mono-
tone incomplete data set with p =100, n = 500 and k =5 for 100
random initial points. Table 1 displays the comparison in terms of
numbers of iterations required to converge, the CPU time cost, and
the estimation errors. The proposed FREBMM and PX-FREBMM al-
gorithms achieve the same estimation accuracy with the ECME and
PX-ECME algorithms using much fewer iterations and less time.
Fig. 3 depicts the evolution curve of the objective value versus the
number of iterations for a random initial point. The convergence
rates of the proposed FREBMM and PX-FREBMM algorithms domi-
nate the benchmarks.

As discussed in Section 4.3, the reason for the faster conver-
gence of the proposed algorithms is that the minorizing function
is tighter, since the proposed algorithms do not consider the miss-
ing values {y; s} as latent variables, and have fewer latent vari-
ables than the benchmarks. Since the number of missing values

is decided b issi _ 1 - D temeon

y the missing rates (¢ =1 ) ) and data
set size (p, n), we next test the computational complexity of the
four algorithms for data sets with different missing rates and sizes.
For a given set of p, n, and missing rate ¢, we randomly generate
100 monotone incomplete data sets from t,(ftrue, Ztrues Verue) and
test the four algorithms on these data sets. Note that number of
groups K is randomly generated for each data set. Fig. 4 shows the
average running time versus different missing rates with the data
size fixed as p =100 and n = 500. Fig. 5 shows the average run-
ning time versus different data sizes with the missing rate fixed as

4
35 X 10‘
= 7 P PX-FREMMD (proposed)
S 37" /,/ — — —FREMMD (proposed) h
£ o N N S PX-ECME
g “:: .......... ECME
& -38H i |
k<] i
o i
2 Ll
S -39r; |
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Fig. 3. Objective value versus iteration.
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Table 1

Performance comparison of different algorithms.

ECME

Average number of iterations 285

Average CPU time in sec 119.90
NMSE of i 0.0023
NMSE of R 0.1263

Averaged running time (sec)

—<— ECME

¥ —O©— PX-ECME

—&— FREMMD (proposed)
—%— PX-FREMMD (proposed)

0.1 0.2 0.3 0.4 0.5
Rate of missing values

Fig. 4. Average running time versus missing rates ¢.

Averaged running time (sec)

—<— ECME
—O©— PX-ECME
—H&— FREMMD (proposed)
—¥— PX-FREMMD (proposed)
1007 s s !
50 100 150 200 250
Dimension p

Fig. 5. Average running time versus dimension p.

¢ = 20% (for convenience, we let n = 5p). We can see that the pro-
posed PX-FREBMM algorithm is more than one order of magnitude
faster than the benchmarks for all the settings.

6.2. Regularized robust estimation

In this part, we show the performance of the proposed shrink-
age robust estimator in the small sample size regime. We consider
two classes of estimators: the estimators for the incomplete data
with the monotone missing-data pattern, which include the Stu-
dent’s t ML estimator, the shrinkage Gaussian estimator in [23] and
the proposed shrinkage Student’s t ML estimator, and the estimator
based on only complete samples, the shrinkage Student’s t ML esti-

PX-ECME  FREBMM PX-FREBMM
(proposed)  (proposed)
279 140 12
117.00 56.42 4.71
0.0023 0.0023 0.0023
0.1263 0.1263 0.1263
0.55

—&— monotone, shrinkage Gaussian estimator
—%— monotone, t estimator

—%— complete, shrinkage t estimator
—A— monotone, shrinkage t estimator

051

0.45

Normalized estimation error of covariance

0.05 ' ! !
100 125 150 175 200

Fig. 6. Estimation errors of the covariance R.

mator in [21]. The shrinkage target for the covariance matrix is set
to be the identity matrix motivated by Ledoit and Wolf [18], and
the target for the mean is set to be the sample median. Note that
the shrinkage target we use here does not depend on any prior
knowledge about the true parameter. As for the tuning parame-
ter o of the proposed shrinkage estimator, we let p(«) = 55, and
search for o* that yields the shrinkage estimator with the small-
est NMSE with p in {0.1,0.2,...,1}. This is to eliminate the ef-
fect of parameter tuning. Since, in [23], the authors only devel-
oped the shrinkage Gaussian estimator for the monotone data with
two groups, we first test the performance of the estimators on
monotone incomplete data sets with two groups. We consider 100-
dimensional monotone incomplete data sets, where there are n;
complete samples in the first group and 50 samples in the sec-
ond group with only first 75 components observed. For a given ny,
we randomly generate 100 monotone incomplete data sets from
tp(Mrue, Xtrues Virue). Figs. 6 and 7 show the average estimation
errors. The existing shrinkage Gaussian estimator is too inefficient
for heavy-tailed data sets, and the proposed shrinkage Student’s t
ML estimator outperforms other estimators, since it considers the
heavy-tail, is well stabilized by the shrinkage, and makes use of
whole data set. Fig. 8 gives an example for the convergence of
the proposed algorithms RREBMM and FRREBMM. Both algorithms
converge, and the FRREBMM algorithm is faster than the RREBMM
algorithm, since its minorizing function is tighter.

Then we test the performance of the proposed estimator on
monotone incomplete data sets with different numbers of groups.
We set p = 100. For an incomplete data set with K groups, there
are 150 complete samples in the first group and 50 samples in
any other kth group with the first 110 — 10k components observed.
Similarly, a number of 100 incomplete data sets are generated for
each setting. Figs. 9 and 10 show the average estimation errors for
data sets with different K's. The proposed shrinkage estimator al-
ways provide more reliable estimates than other two estimators.
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Now we show the sensitivity of the proposed shrinkage es-
timator to the shrinkage target t and T. We set K =2, p = 100,
p> =75, ny =100, and n, = 150. We first fix t as the sample me-
dian, and analyze the sensitivity to T. Table 2 lists the average es-
timation errors with T being a Toeplitz matrix with T;; = 38/,
B €{0.1,02,...,0.7} (the true covariance matrix (Tirye);j =3 *
0.8/=J1). Then we fix T as the identity matrix, and analyze the
sensitivity to t. Table 3 lists the average estimation errors with
t=t1, t €{0.1,0.2,...,0.9}. The tables indicate that the estima-
tion accuracy increases as the prior target gets close to the true
value. Even if the prior target is far from the true value, e.g., t = 0.1
and B =0.1, the estimation error is still no worse than the ex-
isting nonshrinkage Student’s t ML estimator. The reason is that
when t = 0.1, the regularization parameter «* is small, and the es-
timates are dominated by the information from samples, and when
B =0.1, T is close to the indentity matrix, and this still helps
in improving the accuracy by shrinking the eigenvalues of R to-
wards to the center in the small sample regime. To summarize,
one can expect that a more informative prior (t, T) close to the
true value can lead to more accurate estimation. Even the prior (t,
T) is wrong, it still performs no worse than the nonshrinkage Stu-
dent’s t ML estimator given that o* is well selected.

In the last simulation, we apply the proposed shrinkage ro-
bust estimator for the monotone missing-data pattern to estimate
the covariance matrix for stocks with available histories of various
lengths, and compare it with other different covariance estimators
on a real financial market data set. We consider 48 constituent
stocks of the Hang Seng Index, and download their dividend-
adjusted monthly close prices from Jan. 1998 to Nov. 2017 from
the Bloomberg. Since different stocks went public via IPOs at dif-
ferent times, the number of historical monthly log returns for each
stock varies from 86 to 239. These log returns can be considered as
following the monotone missing-data pattern (see Fig. 11 for an il-
lustration) [25]. An important reason for estimating the covariance
matrix of stocks is to provide inputs into portfolio construction. As
conventionally done in the financial literature [21,33], we compare
the performance of the covariance matrix estimators in the setup
of the minimum variance portfolio constructed using the estimates
based on the historical log returns. The mathematical formulation
of the minimum variance portfolio construction problem is

minimize W/ Rw
w

subject to 17w =1, (68)
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Table 2
Average estimation errors of the proposed shrinkage estimator for different T.

B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Nonshrinkage
NMSE of R 02186  0.1914 0.1680 0.1448 0.1183  0.0853  0.0444  0.5239

Table 3 Let us regard Feb. 1998 as the first month. At a particular

Average estimation errors of the proposed shrinkage estimator for different t. month n, for nonshrinkage estimators. we use the previous n — 1
t 0.1 0.2 0.3 0.4 0.5 monthly returns to estimate the covariance matrix R, and find the
NMSE of i 0.0077 0.0076 0.0075 0.0074  0.0073 optimal allocation weights w* based on the estimate. For shrinkage
t 0.6 0.7 0.8 0.9 nonshrinkage

estimators, we first divide the previous n — 1 monthly returns into
two parts with the first n — 1 — n,;; monthly returns as the training
data to estimate the covariance R and find the optimal allocation
weights w for different regularization parameters «, and the re-
maining n,, monthly returns as the validation data for selecting

NMSE of i 0.0070 0.0067 0.0061 0.0042 0.0102

Then we use the overall n — 1 monthly returns to estimate the co-
variance matrix using «*, and compute the corresponding optimal
allocation weights w*.

After obtaining the allocation weights w* for all the estimators,
we construct the portfolio using w*, and compute the portfolio
variance in the next nes: months. This estimation and test proce-
dure is repeated from n =187 to 227. In the simulation, we set
p(a) = 715, and search for o* with p(e) in {0.1,0.2,...,1}. The
shrinkage target for mean and covariance are sample median and
identity matrix, respectively. The parameters are set to be n,, = 12
and Neest = 12.

Two classes of estimators are considered: the estimators for the
incomplete data with the monotone missing-data pattern, which
include the Gaussian ML estimator, the Student’s t ML estimator,

0 ‘ ‘ ‘ ‘ ‘ and the proposed shrinkage Student’s t ML estimator, and the es-

0 5 10 15 20 25 30 35 40 45 timators based on only complete samples, which include sample

Constituent stocks of Hang Seng Index average, the Student’s t ML estimator, and shrinkage Student’s t

Fig. 11. Monotone missing-data pattern in the log returns of Heng Seng Index con- est{mator. Fig. ‘1.2 compares the risk (V&I‘lgl‘lCG) of the ‘mmlmurhn

stituent stocks. The blue parts are the observed values. (For interpretation of the variance portfolio constructed based on different covariance esti-

references to color in this figure legend, the reader is referred to the web version mators. The shrinkage estimators yield lower risk than the non-

of this article.) shrinkage estimators, and the proposed shrinkage Student’s t esti-

mator for the monotone missing-data pattern performs better than

the existing shrinkage estimator Student’s t based only on com-
plete samples, since it makes good use of all the data.

N
o
o
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where R is the estimated covariance matrix of the stocks and w
denotes the weights to be allocated on different stocks [21].
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Fig. 12. Risk (variance) comparison of portfolio constructed based on different covariance estimators (the numbers in the parentheses are the percentage decreases of
portfolio variances obtained by monotone shrinkage t estimator compared with that of complete shrinkage t estimator).
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7. Conclusions

In this paper, we have considered the robust estimation of the
mean and covariance matrix for incomplete data with the mono-
tone missing-data pattern. The contribution of his paper is twofold.
First, we have derived two algorithms based on the MM framework
for the existing Student’s t ML estimator. The minorizing function
of the proposed algorithms achieves a much tighter approxima-
tion of the objective function than that of the existing algorithms,
therefore, the proposed algorithms enjoy faster convergence rates.
Secondly, we have proposed a regularized estimator by adding a
penalty term to the original Student’s t log-likelihood function. And
two optimization algorithms have been designed for it based on
the MM framework. The proposed regularized estimator can work
considerably better in small sample size regime.

Although this paper focuses on the incomplete data with the
monotone missing-data pattern, the above proposed regularized
estimator and algorithms can be extended to incomplete data with
any arbitrary missing-data pattern. Similarly, we can use the ML
estimator assuming the samples follow a Student’s t-distribution,
and regularize the estimator by shrinking the estimator to a prior
target.
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Appendix A. Proof

A.1. Proof for Proposition 2

Let us denote by Qz, (0|0(t) ) the expectation of complete data
log-likelihood with Z; considered as the latent variable, and by
Qz,z, (0|0(t)) the expectation of complete data log-likelihood with
both Z; and Z, considered as the latent variables. According the
definition, we have

s o0

(Y. Z1,Z,|9)
p(Z2 Y. Zy, 0“)

3/ /p(Zz|Y,Zl,0(t)> log
/ log ( p(Y.2Z1. zz|0)<

/ o p(Y.Z1.210)p (Y,zlw“))
(Y,Zl,22|0(t))

- /log (p(Y,Z1|0))p<Z1|Y,0(t)>dZ1 :flog fp(Zz|Y,Z1,0([))

where the inequality is from the Jensen’s inequality. Therefore,

Q, (0|0<t)) — Qg <0<[)|0(‘)> " l(Y|0(t))
- sz, (awm) O, <0<f>|0“>> + 1(Y|0<°),

ie.,

Z, <0|0(t)) = 82,2, <0|0(t))~

A.2. Proof for Proposition 2

(A2)

(A3)

Let us define, for j=1,2,..., p, the weighted covariance of y;;
(first j components) in the k(j)th group around the mean f;y,

ie(j)

cOmwy= Y oy -rao) Vo - rao) (A4)
i=ny(jy-1+1
and the weighted covariance of y;; in the first k(j) groups,
Mie(j)
R () =" o (Vi) — #i) (V) — Bip) " (A.5)
Note that
R () = % [ ()] (A6)
J ()N

k=1

where [Cz(stk) (m)](j) is the upper left j x j submatrix of CJ@ (n), and

(t) (t) (t) ( ) (f)
R () =S + Q7 (ng) - ¥) (me) - ¥)")"-
Substituting (29) and (A.4) into g(p, X|p(®, TO, vy gives
g(k Hp®©, 2O vO)

K 1 — Ny_
:Z{_E (H, Gy ()M, + %nkl logdet (H(”“H(T”k))}
k=1

(A7)

1 K Pk K
=5 ,; ]T[C(f) (u)](]) P+ ; (n — 1) log det (Hy,))

k~-~|
rﬁ

gk)(”‘)](])h +Z{(nk_nk I)ZIOg( ]])}

Jj=1 k=1 j=1

dZ, p<z1 Y, 0(‘>)dz

dZ, p(Z1 Y, 6?(”>dz1

0“)) p(z2 Y. Z,, 61“));)(21 Y, (;1“>)dzzdzl

p<z1 L Z5|Y. 0(“>dzzdz1

:/ log(p(Y,Z1,Zz|0))p(Zl,Zz|Y,0([)>dZZdZ]—/ log(p(\{,z1,zz|¢9“)>)p(z],zzw,c‘)m)dzzolz1

+ / log (p(Y, z |0<“)) p(Z1,Zz|Y, 0([))dZZdZ1 — Q2 (owm) ~Qzz, (0“>|0“>) +Q, (0“>|0“>>.

(A1)
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p p k()
-5 Z hiR ()b + Y log (hy,) (ny — my_q)
j=1 k=1
1 p
=-3 ZQ?)h]T‘(IL(j) 7y )(”’(] ) ZhTs(t)h
]:
+ Z log (hj ;) M)
=1

1 T 1 p
=~ 5 (r-0900) BOG) (-6 ) - 5 > WIS,
j=1

p
+ ) log (hj )iy

j=1

(A8)
where the constant in g(p, X|u(®, O, v) is ignored.

A.3. Proof for Proposition 3

Suppose the u(x, H|p'®, O, v(0) is maximized by pu¢+1 and
H®D, From (30), it is obvious that

,L(Hl) _ o(t) (H(t”))

-T T_ T_ 17

— (He) [(hﬁ””) §O.. (hf;“)) yl()t):l . (A9)

The derivative of u(p, H|pl®, X)) with respect to h; at p(¢+1
and H*D should be equal to 0

u(p, Hlp®, O, v©) |
(@+1) He+D
oh, "

_ (M(Hl) _p® (H(t+1)))TB(t)(H(t+l)) L (H) I
_ %<1M ® (M(rﬂ) _ o(t)(H(t+1))>>

, OB (H) OB (H) ])
x Diagl | —+——=|He+vs « - os —57—— |Hen
([ oh;, M oh;; M

(e (u 070
— (DY 4 (0.,

= (")’ + (0. 0.1/ g

—o. (A.10)

t+1)
0, l/hj(f )nk(]‘)

which is equivalent to

O\ @+ _ oy E+DNT,
(LYY hED = (L) (0,...,0,1/h ) . (A11)
T
Denote cﬁ.t”) = (L;.t)) h;t”). The equation (A.11) can be rewritten
as

(t+1) _ (t+DN\T

< _(0,.4.,0,1/ch]‘ ) iy - (A12)
Therefore,

(t+1) _ I \r

) = <0,...,0, n,§m> , (A13)

1
and thus, h(t“) (L(t)) T(o,...,0, nkz(j))T. Then the minorizing
function (26) is max1mlzed by (37) and (38).

A.4. Proof for Proposition 4

Substituting (29) into g5k (g, T|p®, £ 1 ©) gives

gszhrink ([L, Hl[l,([), Z(t), v(t))

p
—;th»{sz;“(u

9) gy ~9°) +) }hj

¥'~!

p
+ Z“km log (h; ;) — Z

j=1

T v® —2

v®© —2
X{aiv([) () —ti) (o) — ) toe—G T(j)}h;

1 ® _2 - i T
=32 (Q?) tar N0 )hJT‘ (ki =97) () = ¥7) Iy
1T & reo .
—§Zhjsj hj+2(nk(j)+a)log(hjyj)
j=1 j=1

- %( -9 (H)) ﬁ(‘)(H)<u—6(t)(H)>—%zp: hiS©h,

+ Zp: (i) + ) log (hy ;)

(A14)
j=1
where
() -
8" () =HT(h[F". ... n§O)". (A15)
BO (H) = HDiag(Q"® + o —2  qo g2 — 2y
- HIaERA p@O e MG '
(A.16)

Following the same way in the proof for Proposition 4, we can get
the maximizer of gi"nk (g, H|u(®, T, v(O):

LD = (H(t+l))—TI:(hgtJrl))Tvgt)’ L (hgm))T%:)]T’ (A17)
hj.pr]) = L;[))ir(o, ...,0,1/nk(]’) +Ol)T. (A18)
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