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This paper considers the robust estimation of the mean and covariance matrix for incomplete multi- 

variate observations with the monotone missing-data pattern. First, we develop two efficient numerical 

algorithms for the existing robust estimator for the monotone incomplete data, i.e., the maximum likeli- 

hood (ML) estimator assuming the samples are from a Student’s t -distribution. The proposed algorithms 

can be more than one order of magnitude faster than the existing algorithms. Then, to deal with the 

unreliability and the inapplicability of the Student’s t ML estimator when the number of samples is rela- 

tively small compared to the dimension of parameters, we propose a regularized robust estimator, which 

is defined as the maximizer of a penalized log-likelihood. The penalty term is constructed with a prior 

target as its global maximizer, towards which the estimator will shrink the mean and covariance matrix. 

In addition, two numerical algorithms are derived for the regularized estimator. Numerical simulations 

show the fast convergence rates of the proposed algorithms and the good estimation accuracy of the 

proposed regularized estimator. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Estimating the mean and covariance matrix is a fundamental

problem in statistical signal processing related fields. A wide range

of applications, such as noise attenuation in image processing [1] ,

adaptive beamforming in communications [2] , and portfolio con-

struction in finance [3] , all depend on the accurate estimation of

the mean and covariance matrix. A common approach to estimate

these quantities is to use a sample average. However, in many

practical applications, the samples may be incomplete, i.e., contain-

ing missing values. For example, in astronomical, meteorological,

or satellite-based applications, weather or other conditions may

disturb sample taking schemes, which will lead to missing data

problems [4] . In wireless communications, sensor failure or noise

can result in the loss of data [5,6] . In financial markets, missing

data occurs when the stocks of interest have various lengths of

available historical data. Under such missing data scenarios, the

traditional sample average method to estimate the mean and co-

variance matrix is no longer applicable, and efficient approaches

are needed. 

One simple way to estimate the mean and covariance matrix

for incomplete data is via maximum likelihood (ML) estimation as-

suming that the samples are independent and identically drawn
∗ Corresponding author. 
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rom a Gaussian distribution [7,8] . Since, for complete data, it is

nown that the sample mean and sample covariance matrix co-

ncide with the Gaussian maximum likelihood estimates, this ex-

ension to incomplete data is natural. However, in practice, the

istribution of the data in many applications has a heavier tail

han the Gaussian distribution, either due to the intrinsic property

f the application, e.g., in financial engineering [9] , or the exis-

ence of outliers, e.g., samples corrupted by impulsive noise [10] .

or these cases, the Gaussian ML estimator will give completely

nreliable estimates, and one may seek instead a robust ML esti-

ator assuming that the underlying distribution is some heavy-

ailed elliptical distribution, such as the Student’s t -distribution.

ittle proposed in [11] to use the Student’s t -distribution with a

nown degree of freedom ν as the underlying distribution to es-

imate the mean and covariance matrix for data with missing val-

es. Later, a more general case of the Student’s t -distribution with

nknown ν was considered in [12,13] . The Student’s t ML esti-

ator can provide reliable estimates of mean and covariance ma-

rix even if erroneous observations occur or the samples follow a

eavy-tailed distribution. To get the ML estimates, the expectation-

aximization (EM) algorithm was employed. Although the EM al-

orithm is a popular tool, it has been criticized for its slow conver-

ence speed [14,15] . Thus, various extensions of the EM algorithm,

.g., the expectation/conditional maximization either (ECME) algo-

ithm [16,17] , and the parameter-expanded EM (PX-EM) approach

15] , have been proposed to accelerate its convergence. 

https://doi.org/10.1016/j.sigpro.2019.07.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.07.009&domain=pdf
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Fig. 1. Incomplete data set with the monotone missing-data pattern. The blue-filled 

rectangles are the observed values, and the blank rectangles are missing values. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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Another issue that often occurs in contemporary applications is

he shortage of samples compared to the dimension of the param-

ters being estimated, like may happen in bioinformatics, finan-

ial engineering, and wireless communications [18–21] . When the

umber of samples is relatively small compared to the dimension

f the parameters to be estimated, the information provided by

he samples is insufficient for an accurate statistical inference. In

ddition, it is obvious that the sample covariance will be singular

hen n < p . The above robust estimator has the same drawback.

lthough there have been significant efforts to develop method-

logies for mean and covariance estimation from incomplete data

n the small sample size regime [22–24] , they are all based on

he traditional Gaussian distribution assumptions, and less atten-

ion has been placed on robust estimation. 

This paper focuses on the robust estimation of mean and co-

ariance matrix for incomplete data with the monotone missing-

ata pattern (see Fig. 1 for an illustration of the pattern). Accord-

ng to which values are observed, and which values are missing,

he incomplete data sets can be classified into different missing-

ata patterns. The monotone missing-data pattern is a kind of

attern that appears frequently in real-world applications, where

bservations are missing after some point possibly different for

ach variable. For example, in longitudinal studies, the dropout of

ome subjects before the end of a study will lead to the monotone

issing-data pattern [13] , while in wireless communications, the

ailure of some of the sensors before measurements are completed

an also result in this kind of incomplete data [6] . In financial mar-

ets, assets become part of the market at different times through

nitial public offerings (IPOs), which leads to a reversed version of

his pattern as well [25,26] . Our main contributions in this paper

re: 

1. We investigate the existing robust estimator of mean and

covariance matrix for monotone incomplete data sets, and

develop two more efficient algorithms, which can be more

than one order of magnitude faster than the existing PX-

ECME algorithm in [13] , based on the general minorization-

maximization (MM) framework. 

2. In order to deal with the “large p small n ” situation, for

which the existing robust estimator will provide unreliable

estimates or may even not exist, we propose a regularized

robust estimator of mean and covariance matrix, defined as

the maximizer of a penalized likelihood function. The pro-

posed estimator shrinks the mean and covariance matrix to-

wards a prior target, and can provide reliable estimates even

when the sample size is small relative to the problem di-

mension. 

3. We design two efficient algorithms for this regularized ro-

bust estimator. Simulations on both synthetic data and real

data show that the proposed regularized estimator can pro-
vide more accurate estimates than the existing robust esti-

mators in the small sample size regime. 

The remainder of this paper is organized as follows.

ection 2 explains the concept of the monotone missing-data

attern and reviews the existing robust estimator. Section 5.1 in-

roduces the proposed regularized robust estimator and gives the

roblem formulation. Section 4 is devoted to the introduction of

he MM framework and the derivation of the proposed algorithms

or the existing robust estimator. Section 5 develops two algo-

ithms for proposed regularized robust estimator. In Section 6 ,

imulations results are provided. Section 7 concludes the paper. 

Notation: R 

p stands for the p -dimensional real-valued vector

pace. S 
p 
++ stands for the set of symmetric positive definite p × p 

atrices, which is a closed cone in R 

p . The superscripts (·) −1 and

 ·) T denote the matrix inverse and transpose operator, respectively.

 (·) and Cov(·) denote the mathematical expectation and covari- 

nce operator, respectively. det (·) and Tr(·) denote the matrix de-

erminant and trace, respectively. ��0 means that � is a symmet-

ic positive definite matrix. 

. Robust estimation for monotone incomplete data 

In this section, we introduce the monotone missing-data pat-

ern, and review the existing robust estimation approach for mean

nd covariance from monotone incomplete data. 

.1. Monotone missing – data pattern 

Suppose we collect n independent samples of a p -dimensional

andom vector y in an n × p matrix Y = { y i = (y i, 1 , y i, 2 , . . . ,

 i,p ) ; i = 1 , 2 , . . . , n } . We say the data set follows the monotone

issing-data pattern when the incomplete samples can be sorted

nto K different groups such that, in the first group containing sam-

les i = 1 , . . . , n 1 , only the first p 1 components are observed; more

enerally, in the k th group containing samples i = n k −1 + 1 , . . . , n k ,

nly the first p k components are observed [13] : 

 

(1) 
i, 1 

, y (1) 
i, 2 

, . . . , y (1) 
i,p k , 

. . . , y (1) 
i,p 1 

for i = 1 , . . . , n 1 ;
· · ·
 

(k ) 
i, 1 

, y (k ) 
i, 2 

, . . . , y (k ) 
i,p k 

for i = n k −1 + 1 , . . . , n k ;
· · ·
 

(K) 
i, 1 

, . . . , y (K) 
i,p K 

for i = n K−1 + 1 , . . . , n K , 

here p = p 1 > · · · > p K and 0 = n 0 < n 1 < · · · < n K = n . The super-

cript represents the group that incomplete sample belongs to. We

enote by y i ,obs and y i ,mis the observed values and missing val-

es of the sample y i such that y i = (y i, obs , y i, mis ) . The missing-data

echanism is assumed to be ignorable, i.e., the missingness does

ot depend on values of the missing data [13] . The examples given

n the introduction can all be considered to have this missing-data

echanism. Given the incomplete monotone data set Y , we are in-

erested in the robust estimation of mean and covariance matrix

or the random variable y . The estimation accuracy increases with

he increass of number of observed values ( 
∑ K 

k =1 (n k − n k −1 ) p k ). 

.2. Robust estimation of mean and covariance matrix 

The Student’s t distribution based ML estimator is a widely used

obust estimator for mean and covariance matrix [12,27] . Suppose

he random variable y follows a Student’s t -distribution: y ∼ t p ( μ,

, ν), where μ ∈ R 

p is the location parameter, � ∈ S 
p 
++ is the

hape matrix, and ν > 0 is the number of degrees of freedom.
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Then, for ν > 2, the mean and covariance matrix of y are μ and

R = 

ν
ν−2 �, respectively 1 . 

When there are no missing values, i.e., we have a complete data

set { y i }, the ML estimation problem for μ, �, and ν , is 

maximize 
μ, ��0 ,ν≥ν−

l ( { y i } | μ, �, ν) (1)

where 

l ( { y i } | μ, �, ν) = −ν + p 

2 

n ∑ 

i =1 

log 
(
ν + ( y i − μ) 

T �−1 
( y i − μ) 

)
− n 

2 

log ( det ( �) ) + 

nν

2 

log ( ν) 

+ n log 

(
�
(
ν + p 

2 

))
− n log 

(
�
(
ν

2 

))
− np 

2 

log ( π) . (2)

with �( ·) being the gamma function. After obtaining the ML es-

timates ˆ μ, ˆ � and ˆ ν, the estimates for the mean and covariance

matrix are ˆ μ and 

ˆ R = 

ˆ ν
ˆ ν−2 

ˆ �, respectively. 

Setting the gradient of l ({ y i }| μ, �, ν) to zero, we get 

ˆ ν + p 

n 

n ∑ 

i =1 

y i − ˆ μ

ˆ ν + 

(
y i − ˆ μ

)T ˆ �
−1 (

y i − ˆ μ
) = 0 , (3)

ˆ ν + p 

n 

n ∑ 

i =1 

(
y i − ˆ μ

)(
y i − ˆ μ

)T 

ˆ ν + 

(
y i − ˆ μ

)T ˆ �
−1 (

y i − ˆ μ
) = 

ˆ �. (4)

The estimates ˆ μ and 

ˆ � can be interpreted as the weighted

sample averages. The weights are inversely proportional to (y i −
ˆ μ) T ˆ �

−1 
(y i − ˆ μ) , which means they decrease as the samples get

far away from the center. This property indicates this estimator

is more robust to outliers compared with the (unweighted) sam-

ple average, which is equivalent to the ML estimate assuming a

Gaussian underlying distribution. The Student’s t ML estimator in

(3) and (4) belongs to the class of M-estimators, whose robustness

properties have been studied in [27] . 

When the data set is incomplete and follows the monotone

missing-data pattern, the ML estimation problem is much more

complicated. Let us denote by y (p k ) 
the vector of the first p k com-

ponents of y , and by μ(p k ) 
the vector of the first p k components

of μ, and by �(p k ) 
the upper-left p k × p k submatrix of �. The

marginal distribution of y (p k ) 
is 

y (p k ) 
∼ t p k 

(
μ(p k ) 

, �(p k ) 
, ν

)
. (5)

Therefore, given the monotone data set Y , the ML estimation prob-

lem for μ, � and ν can be formulated as follows: 

maximize 
μ, ��0 , ν≥ν−

l ( Y | μ, �, ν) = 

K ∑ 

k =1 

h k ( μ, �, ν) , (6)

Q 

(
μ, �, ν(t) | μ(t) , �(t) 

, ν(t) 
)

= E 

p 

(
{ τi } , { y i, mis } | μ(t) , �(t) 

, ν(t) , { y i, obs } )
(
l

= 

∫ 
l 
({ y i, obs } , { y i, mis } , { τi } | μ, �, ν( t ) 

)
p 

(
{ τi } , { y i, mis } | μ(t) , �(t

= 

n ∑ 

i =1 

{ 

−1 

2 

Tr 
(
E 

(
τi y i y 

T 
i 

)
�−1 

)
+ μT �−1 

E ( τi y i ) −
1 

2 

μT �−1 μE ( τ
1 In practice, when we use Student’s t ML estimator to estimate mean and covari- 

ance, we do not want ν to be close to 2, since the covariance will blow up. Thus, 

in this paper we let ν ≥ ν−, where ν− = 2 . 01 . 

 

 

i  
here 

 k ( μ, �, ν) = 

n k ∑ 

i = n k −1 +1 

log p 
(
y i, (p k ) 

| μ(p k ) 
, �(p k ) 

, ν
)

= −ν + p k 
2 

n k ∑ 

i = n k −1 +1 

log 

(
ν + 

(
y i, (p k ) 

− μ(p k ) 

)T 

×
(
�(p k ) 

)−1 
(

y i, (p k ) 
− μ(p k ) 

))
− n k − n k −1 

2 

log 
(
det 

(
�(p k ) 

))
+ ( n k − n k −1 ) 

{ 

ν

2 

log ( ν) + log 

(
�
(
ν + p k 

2 

))
− log 

(
�
(
ν

2 

))
− p k 

2 

log ( π) 

} 

(7)

ith y i, (p k ) 
denoting the first p k components of y i . 

.3. Existing algorithm 

The above ML estimation problem (6) is too complicated to

e solved directly. Interestingly, the Student’s t -distribution can be

ritten as a mixture of Gaussian distributions: 

odel O1 : 
y i | μ, �, τi ∼ N p ( μ, �/τi ) , 
τi ∼ Gamma ( ν/ 2 , ν/ 2 ) . 

(8)

herefore, in [17] , the authors proposed to regard both { τ i } and

 y i,mis } as unobserved latent data, and use the ECME algorithm to

olve the robust estimation problem iteratively. The ECME algo-

ithm is a variant of the EM algorithm. At iteration t + 1 , it updates

he parameters according to 

μ(t+1) , �(t+1) 
)

= arg max 
( μ, �) 

Q 

(
μ, �, ν(t) | μ(t) , �(t) 

, ν(t) 
)
, (9)

nd 

(t+1) = arg max 
ν≥ν−

l 

(
Y | μ(t+1) , �(t+1) 

, ν
)
, (10)

here Q ( μ, �, ν( t ) | μ( t ) , �( t ) , ν( t ) ) is the expectation of the complete

ata log-likelihood with respect to the posterior distribution p ({ τ i },

 y i , mis }| μ( t ) , �( t ) , ν( t ) , { y i , obs }): 

bs } , { y i, mis } , { τi } | μ, �, ν( t ) 
))

t) , { y i, obs } 
)
d τ1 . . . d τn d y 1 , mis . . . d y n, mis 

n 

2 

log ( det ( �) ) + const. (11) 

The expectation operations in (11) are all with respect to the

osterior distribution p ({ τ i }, { y i ,mis }| μ( t ) , �( t ) , ν( t ) , { y i ,obs }). For sim-

licity of notations, we omit the subscripts of these expectations.

he update ( μ(t+1) , �(t+1) ) can be expressed as 

( t+1 ) = 

∑ n 
i =1 E ( τi y i ) ∑ n 

i =1 E ( τi ) 
(12)

nd 

( t+1 ) = 

1 

n 

n ∑ 

i =1 

{
E 

(
τi y i y 

T 
i 

)
− 2 E ( τi y i ) 

(
μ( t+1 ) 

)T 

+ E ( τi ) μ
( t+1 ) 

(
μ( t+1 ) 

)T 

}
. (13)

Since the convergence speed of the EM type algorithms is typ-

cally very slow, the authors of [15] introduced the parameter
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ν  
xpansion-EM (PX-EM) method to accelerate EM-based algorithms,

hich leads to the benchmark, the PX-ECME algorithm in [13] . In-

erested reader may refer to Sections 8.5.3 and 12.3 of [13] for de-

ails. 

. Regularized robust estimation for monotone incomplete 

ata 

When the number of samples is sufficient, the above robust es-

imator can provide accurate estimates. However, in some practi-

al applications, the number of samples is relatively small com-

ared to the number of the parameters. In such cases, the above

obust estimator will give unreliable estimates, and the algorithm

esigned for the estimator may even fail to converge. Motivated

y the idea in [20,21] , we propose to regularize the above estima-

or by shrinking the estimator to a prior target ( t, T ). This method

ot only provides a way to incorporate some prior information into

he estimator, but also helps stabilize the estimator in small sam-

le size regime [21] . 

The proposed regularized robust estimation problem can be ex-

ressed as follows: 

maximize 
, ��0 , ν≥ν−

l ( Y | μ, �, ν) − αu ( μ, �, ν) , (14) 

here α is a nonnegative parameter, and u ( μ, �, ν) is a penalty

unction, which increases when the mean and covariance μ and
ν

ν−2 � deviate from the prior mean and covariance ( t, T ). Let us de-

ote the objective function by l shrink (Y | μ, �, ν) . Here we adopt a

idely used penalty, the Kullback-Leibler (KL) divergence between

he normal distributions N (t , T ) and N ( μ, ν
ν−2 �) [21,28] : 

 ( μ, �, ν) = D KL 

(
N ( t , T ) ||N 

(
μ, 

ν

ν − 2 

�
))

= 

1 

2 

( t − μ) 
T 
(

ν

ν − 2 

�
)−1 

( t − μ) 

+ 

1 

2 

Tr 

((
ν

ν − 2 

�
)−1 

T 

)
− p 

2 

− 1 

2 

log det ( T ) + 

1 

2 

log det 

(
ν

ν − 2 

�
)
. (15) 

The following proposition indicates that u ( μ, �, ν) is a proper

enalty function. 

roposition 1. For any μ ∈ R 

p , � ∈ S 
p 
++ , and ν ≥ ν−, it follows that

 ( μ, �, ν) ≥ 0 with the equality achieved if and only if μ = t and
ν

ν−2 � = T . 

roof. The KL divergence is always nonnegative, and is equal to

ero if and only if the two distributions are identical [29] . �

. Algorithms for robust estimation 

In this section, we develop two algorithms faster than the

enchmark PX-ECME algorithm for the robust estimation problem

6) based on the minorization-maximization (MM) framework. Let 

s first give a brief introduction to the MM framework. 

.1. Minorization–Maximization framework 

Consider the following optimization problem: 

maximize 
x 

f ( x ) 

subject to x ∈ X , (16) 

here X is a closed convex set in R 

p , and f : X → R is a contin-

ous function. When the problem is too complicated to be solved

irectly, the MM framework circumvents such a difficulty by solv-

ng a sequence of simpler optimization problems [30,31] . 
At iteration t + 1 , the MM framework first find a minoriz-

ng function g ( x | x ( t ) ) for f ( x ), which satisfies the following condi-

ions: 

g 
(
x 

( t ) | x 

( t ) 
)

= f 
(
x 

( t ) 
)
, 

g 
(
x | x 

( t ) 
)

≤ f ( x ) , ∀ x ∈ X , 

g ′ 
(
x 

( t ) ; d | x 

( t ) 
)

= f ′ 
(
x 

( t ) ; d 

)
, ∀ x 

( t ) + d ∈ X . (17) 

ith f ′ ( x ( t ) ; d ) and g ′ ( x ( t ) ; d | x ( t ) ) standing for the directional deriva-

ive. In other words, the minorizing function g ( x | x ( t ) ) is a global

ower bound for f ( x ) and coincides with f ( x ) at x ( t ) . Then the MM

ramework updates x as 

 

( t+1 ) = arg max 
x ∈X 

g 
(
x | x 

( t ) 
)
. (18) 

e can easily see f (x (t+1) ) ≥ f (x (t) ) . It is proved in [31] that any

imit point of the sequence { x ( t ) } is a stationary point of the origi-

al problem (16) . 

The idea of minorization and maximization can also be applied

lockwise, i.e., we can divide the variables into different blocks,

nd conduct the minorization and maximization for each block of

ariables, with other blocks of variables fixed in every iteration. 

The key to the success of MM lies in constructing the minoriz-

ng function. On the one hand, to achieve a fast convergence speed,

 minorizing function that follows the shape of the objective func-

ion is desirable. On the other hand, it should be simple to maxi-

ize so that the computational cost per iteration is low. It is not

asy to find a good trade-off between these two opposite targets

21] . 

Interestingly, the EM algorithm is actually a special case of the

M, and the ECME algorithm is a special case of the block MM

30] . More specifically, denote the observed data by X , the unob-

erved latent variable by Z , the parameter by θ, and the expecta-

ion of the complete data log-likelihood by Q ( θ| θ( t ) ). The minoriz-

ng function for the observed data log-likelihood l ( X | θ) in the EM

lgorithm is 

 

(
θ| θ( t ) 

)
= Q 

(
θ| θ( t ) 

)
− Q 

(
θ( t ) | θ( t ) 

)
+ l 

(
X | θ( t ) 

)
, (19)

hich is the sum of Q ( θ| θ( t ) ) and a constant. In addition, the fol-

owing proposition indicates that, when applying the EM algo-

ithm, if we can consider fewer variables as latent data, the re-

ulting minorizing function will be a tighter approximation of the

riginal log-likelihood. 

roposition 2. For any two different unobserved latent variables Z 1 

nd Z 2 , the minorizing functions satisfy 

 Z 1 

(
θ| θ( t ) 

)
≥ g Z 1 Z 2 

(
θ| θ( t ) 

)
, (20) 

here g Z 1 ( θ| θ(t) 
) is the resulting minorizing function with Z 1 consid-

red as latent variable, and g Z 1 Z 2 ( θ| θ(t) 
) is the resulting minorizing

unction with both Z 1 and Z 2 considered as latent variables. 

roof. See Appendix A.1 . �

.2. Robust estimation via block MM 

The objective function of the robust estimation problem (6) is

ery complicated. It is difficult to apply MM for all variables jointly.

herefore, we partition the three variables into two blocks: ( μ, �)

s one block, and ν as another block. Then we apply block MM to

olve this problem iteratively. At iteration t + 1 , we first conduct

he minorization and maximization for μ and �, with ν fixed as
( t ) , and then optimize ν , with μ and � fixed as μ(t+1) and �(t+1) 

.
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The optimization of ν is easy to solve. If we fix the values of μ
and � as μ(t+1) and �(t+1) 

, the objective function is 

l 
(
Y | μ( t+1 ) , �( t+1 ) 

, ν
)

= 

K ∑ 

k =1 

n k ∑ 

i = n k −1 +1 

−ν + p k 
2 

log 
(
ν + δ( t+1 ) 

i 

)
+ 

K ∑ 

k =1 

( n k − n k −1 ) log 

(
�
(
ν + p k 

2 

))
+ 

nν

2 

log ( ν) − n log 

(
�
(
ν

2 

))
+ const., (21)

where 

δ( t+1 ) 
i 

= 

(
y i, (p k ) 

− μ( t+1 ) 
(p k ) 

)T (
�( t+1 ) 

(p k ) 

)−1 (
y i, (p k ) 

− μ( t+1 ) 
(p k ) 

)
(22)

with k = arg k (n k −1 < i ≤ n k ) . It is a function of a scalar variable,

and the maximizer ν(t+1) can be found by a one-dimensional

search. 

In the following, we concentrate on the minorization and max-

imization for μ and �, which will take some effort. With the ν
fixed as ν( t ) , the objective function is: 

l 
(
Y | μ, �, ν( t ) 

)
= 

K ∑ 

k =1 

{ 

−ν( t ) + p k 
2 

n k ∑ 

i = n k −1 +1 

log 

(
ν( t ) + 

(
y i, (p k ) 

− μ(p k ) 

)T (
�(p k ) 

)−1 
(

y i, (p k ) 
− μ(p k ) 

))
− n k − n k −1 

2 

log det 
(
�(p k ) 

)} 

+ const. (23)

By the concavity of the log ( ·), we have 

log ( x ) ≤ 1 

x 0 
( x − x 0 ) + log ( x 0 ) . (24)

Therefore, at point ( μ( t ) , �( t ) , ν( t ) ), we have 

log 

(
ν( t ) + 

(
y i, (p k ) 

− μ(p k ) 

)T (
�(p k ) 

)−1 
(

y i, (p k ) 
− μ(p k ) 

))

≤
ν( t ) + 

(
y i, (p k ) 

− μ(p k ) 

)T (
�(p k ) 

)−1 
(

y i, (p k ) 
− μ(p k ) 

)
ν( t ) + 

(
y i, (p k ) 

− μ( t ) 
(p k ) 

)T (
�( t ) 

(p k ) 

)−1 (
y i, (p k ) 

− μ( t ) 
(p k ) 

) + const., 

(25)

and then l ( Y | μ, �, ν( t ) ) is minorized by 

g 
(
μ, �| μ( t ) , �( t ) 

, ν( t ) 
)

= 

K ∑ 

k =1 

{ 

n k ∑ 

i = n k −1 +1 

−1 

2 

ω 

( t ) 
i 

(
y i, (p k ) 

− μ(p k ) 

)T 

(
�(p k ) 

)−1 
(

y i, (p k ) 
− μ(p k ) 

)
− n k −n k −1 

2 

log det 
(
�(p k ) 

)} 

+ const., 

(26)

where 

ω 

( t ) 
i 

= 

ν( t ) + p k 

ν( t ) + 

(
y i, (p k ) 

− μ( t ) 
(p k ) 

)T (
�( t ) 

(p k ) 

)−1 (
y i, (p k ) 

− μ( t ) 
(p k ) 

) (27)

with k = arg k (n k −1 < i ≤ n k ) . 

The minorizing function (26) is too complicated to be maxi-

mized directly. But after applying the following Lemma 1 [32] , we

successfully reparameterize g ( μ, �| μ( t ) , �( t ) , ν( t ) ) into a simpler

form in Proposition 3 , whose maximizer is easier to obtain. 

Lemma 1. Given the positive definite matrix � and the upper trian-

gular Cholesky decomposition of its inverse 

�−1 = HH 

T , (28)
here H is an upper triangular matrix with positive diagonal entries,

he upper triangular Cholesky decomposition for ( �( j) ) 
−1 is 

�( j) 

)−1 = H ( j) 

(
H ( j) 

)T 
, (29)

here �( j ) is the upper left j × j submatrix of �, and H ( j ) is the upper

eft j × j submatrix of H . 

roposition 3. If we replace � in (26) with (HH 

T ) −1 , the function

 

(
μ, �| μ(t) , �(t) 

, ν(t) 
)

can be reparameterized as 

g 
(
μ, H | μ( t ) , �( t ) 

, ν( t ) 
)

= −1 

2 

(
μ − θ( t ) 

( H ) 

)T 

B 

( t ) ( H ) 

(
μ − θ( t ) 

( H ) 

)
− 1 

2 

p ∑ 

j=1 

h 

T 
j S 

( t ) 
j 

h j + 

p ∑ 

j=1 

log 
(
h j, j 

)
n k ( j) + const., (30)

here, for j = 1 , 2 , . . . , p , h j is the vector of the first j components

f the jth column of H , 

 ( j) = arg 
k 

( p k −1 < j ≤ p k ) , (31)

he weighted covariance of y i ,( j ) (the first j components) in the first

 ( j ) groups 

 

( t ) 
j 

= 

n k ( j) ∑ 

i =1 

ω 

( t ) 
i 

(
y i, ( j) − ȳ ( 

t ) 
j 

)(
y i, ( j) − ȳ ( 

t ) 
j 

)T 
, (32)

( t ) 
( H ) = H 

−T 
(
h 

T 
1 ̄y 

( t ) 
1 

, h 

T 
2 ̄y 

( t ) 
2 

, . . . , h 

T 
p ̄y 

( t ) 
p 

)T 
, (33)

nd 

 

( t ) ( H ) = H Diag (	( t ) 
1 

, 	( t ) 
2 

, . . . , 	( t ) 
p ) H 

T , (34)

ith the weighted sample mean 

¯
 

( t ) 
j 

= 

∑ n k ( j) 

i =1 
ω 

( t ) 
i 

y i, ( j) ∑ n k ( j) 

i =1 
ω 

( t ) 
i 

(35)

nd 

( t ) 
j 

= 

n k ( j) ∑ 

i =1 

ω 

( t ) 
i 

. (36)

roof. See Appendix A.2 . �

The reparameterized function g ( μ, H | μ( t ) , �( t ) , ν( t ) ) still looks

ontrivial. However, by applying some tricks, we obtain its closed-

orm maximizer, and thus, achieve the closed-form maximizer for

 ( μ, �| μ( t ) , �( t ) , ν( t ) ) successfully. The closed-form maximizer is

iven next in Proposition 4 . 

roposition 4. The minorizing function (26) is maximized by 

( t+1 ) = 

(
H 

( t+1 ) 
)−T 

[ (
h 

( t+1 ) 
1 

)T 
ȳ ( 

t ) 
1 

, . . . , 
(
h 

( t+1 ) 
p 

)T 
ȳ ( 

t ) 
p 

] T 
(37)

nd 

( t+1 ) = 

(
H 

( t+1 ) 
(
H 

( t+1 ) 
)T 

)−1 

, (38)

here, for j = 1 , 2 , . . . , p , 

 

( t+1 ) 
j 

= 

(
L ( 

t ) 
j 

)−T 
(

0 , . . . , 0 , n 

1 
2 

k ( j) 

)T 

, (39)

ith L (t) 
j 

(L (t) 
j 

) T being the lower triangular Cholesky decomposition of

 

(t) 
j 

; i.e., 

 

( t ) 
j 

= L ( 
t ) 

j 

(
L ( 

t ) 
j 

)T 
. (40)
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Fig. 2. Minorizing functions comparison. 
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Finally, the robust estimation algorithm developed based on the

lock MM framework is summarized in Algorithm 1 . 

lgorithm 1 Fast robust estimation via block MM (FREBMM). 

) Initialize �( 0 ) as an arbitrarypositive definite matrix, μ( 0 ) asan

rbitrary vector, and ν( 0 ) as an arbitrary number 
(
ν( 0 ) ≥ ν−)

. 

) Iterate 

( t+1 ) = 

(
H 

( t+1 ) 
)−T 

[ (
h 

( t+1 ) 
1 

)T 
ȳ t 1 , . . . , 

(
h 

( t+1 ) 
p 

)T 
ȳ t p 

] T 
, (41) 

( t+1 ) = 

(
H 

( t+1 ) 
(
H 

( t+1 ) 
)T 

)−1 

, (42) 

nd 

( t+1 ) = arg max 
ν≥ν−

l 
(
Y | μ( t+1 ) , �( t+1 ) 

, ν
)
, (43) 

here H 

( t+1 ) is an upper triangular matrixwith the first j com-

onents of its j-th column h 

( t+1 ) 
j 

given by (39), and ȳ ( 
t ) 

j 
is the

eighted sample mean given by (35). 

.3. Minorizing functions comparison and acceleration 

Actually, Algorithm 1 can also be regarded as an implemen-

ation of the ECME algorithm. But different from the previous

CME algorithm based on Model O1, which regards both the

eights { τ i } of the mixture and missing data { y i ,mis } as latent data,

lgorithm 1 is based on the following complete data model: 

odel O2 : 
y i, obs | μ, �, τi ∼ N p k (i ) 

(
μ(p k (i ) ) 

, �(p k (i ) ) 
/τi 

)
, 

τi ∼ Gamma (ν/ 2 , ν/ 2) . 
(44) 

hich only considers { τ i } as latent data. The resulting expectation

f the complete data log-likelihood is 

Q 2 

(
μ, �, ν(t) | μ(t) , �(t) 

, ν(t) 
)

= E 

p 

(
{ τi } , | μ(t) , �(t) 

,ν(t) , { y i, obs } )
(
l 
({ y i, obs } , { τi } | μ, �, ν( t ) 

))
= 

∫ 
l 
({ y i, obs } , { τi } | μ, �, ν( t ) 

)
p 

(
{ τi } | μ(t) , �(t) 

, ν(t) , { y i, obs } 
)
d τ1 . . . d τn . (45) 

The posterior distribution of τ i is 

i | μ( t ) , �( t ) 
, ν( t ) , { y i, obs } ∼ Gamma ( a, b ) (46)

ith 

 = 

ν( t ) + p k ( i ) 

2 

(47) 

nd 

 = 

ν( t ) + 

(
y i, (p k ( i ) ) 

− μ( t ) 
(p k ( i ) ) 

)T (
�( t ) 

(p k ( i ) ) 

)−1 (
y i, (p k ( i ) ) 

− μ( t ) 
(p k ( i ) ) 

)
2 

. 

(48) 

t is easy to prove that it is equivalent to the minorizing function

26) . 

According to Proposition 2 , our minorizing function follows the

hape of the original function better than that of ECME(O1) due to

he fewer latent variables. To illustrate this, in Fig. 2 , we show an

xample of the minorizing functions of the FREBMM and ECME al-

orithms along the line μ , given a randomly generated monotone
1 
ncomplete data set with p = 100 , n = 500 , and k = 5 . The mi-

orizing function of the FREBMM algorithm is obviously a tighter

pproximation of the objective function. Therefore, we can expect

hat the proposed algorithm has a faster convergence rate than the

CME(O1) algorithm. 

In addition, similar to the case of the PX-ECME(O1) [13,15] , the

roposed FREBMM algorithm can also be further accelerated using

he PX-EM method by embedding Model O2 within the following

xpanded model: 

odel X2 : 
y i, obs | μ∗, �∗

, τi ∼ N p k ( i ) 

(
μ∗

(p k ( i ) ) 
, �∗

(p k ( i ) ) 
/τi 

)
, 

τi ∼ βGamma ( ν/ 2 , ν/ 2 ) . 

(49) 

here μ∗ ∈ R 

p , �∗ ∈ S 
p 
++ , and β > 0. The resulting accelerated

cheme is given in Algorithm 2 . The only difference is in (51). 

lgorithm 2 PX-FREBMM. 

) Initialize �( 0 ) as an arbitrarypositive definite matrix, μ( 0 ) asan

rbitrary vector, and ν( 0 ) as an arbitrary number 
(
ν( 0 ) ≥ ν−)

. 

) Iterate 

( t+1 ) = 

(
H 

( t+1 ) 
)−T 

[ (
h 

( t+1 ) 
1 

)T 
ȳ ( 

t ) 
1 

, . . . , 
(
h 

( t+1 ) 
p 

)T 
ȳ ( 

t ) 
p 

] T 
, (50) 

( t+1 ) = 

n ∑ n 
i =1 ω 

( t ) 
i 

(
H 

( t+1 ) 
(
H 

( t+1 ) 
)T 

)−1 

, (51) 

nd 

( t+1 ) = arg max 
ν≥ν−

l 
(
Y | μ( t+1 ) , �( t+1 ) 

, ν
)
, (52) 

here H 

( t+1 ) is an upper triangular matrixwith the first j compo-

ents of its jth column h 

( t+1 ) 
j 

given by (39), and ȳ ( 
t ) 

j 
is the weighted

ample mean given by (35). 

emark 1. In this paper, we assume that the samples are drawn

ndependently from a Student’s t -distribution. But actually the

ame idea and tricks can be applied to the ML estimation of the

arameters of other Gaussian mixture distributions from mono-

one incomplete data. Let y i | μ, �, τi ∼i.i.d. N p ( μ, �/τi ) , where { τ i }

re unobserved i.i.d. positive scalar random variables with known



284 J. Liu and D.P. Palomar / Signal Processing 165 (2019) 278–291 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

A  

(

1  

a

2

μ

�

a

ν  

w  

[

 

f  

r  

a  

i

μ  

t

 

a

 

 

 

t  

�  

t  

g  

i  

w  

i  

A  
probability functions. To obtain the ML estimates for μ and �,

we can regard only { τ i } as latent data and derive the closed-form

maximizer for the expected complete data log-likelihood function

using the tricks in Propositions 3 and 4 . 

4.4. Computational cost 

Now we compare the computational complexity of the pro-

posed FREBMM and PX-FREBMM algorithms with that of the ex-

isting ECME and PX-ECME algorithms. The per-iteration computa-

tional cost comes from two sources: the computation of μ(t+1) and

�(t+1) 
, and the one-dimensional search for ν(t+1) . Since the up-

date method for ν(t+1) is the same in all the four algorithms, here

we only consider the computational cost for μ(t+1) and �(t+1) . For

the proposed FREBMM and PX-FREBMM algorithms, we need to

first compute { S (t) 
j 

} , and then do the Cholesky decomposition for

each S (t) 
j 

. The cost for computing { S (t) 
j 

} is O( 
∑ K 

i =1 p 
3 
k 
(n k − n k −1 )) ,

and the computational cost for all the Cholesky decomposition’s

is O(p 4 ) . The total computational cost is O(p 4 + 

∑ K 
i =1 p 

3 
k 
(n k −

n k −1 )) . For the ECME and PX-EM algorithms, the dominating

cost is the computation of many expectations. The resulting per-

iteration computational cost for is O(np 2 + 

∑ K 
i =1 (p 3 

k 
+ pp k )(n k −

n k −1 ) + 

∑ K 
i =1 p 

2 p k ) . 

5. Algorithms for regularized robust estimation 

In this section, we derive two algorithms for the proposed reg-

ularized robust estimator (14) based on the block MM framework. 

5.1. Regularized robust estimation via block MM 

Recall the objective function of the regularized robust estima-

tion problem (14) is 

l shrink ( Y | μ, �, ν) = l ( Y | μ, �, ν) − αu ( μ, �, ν) . (53)

Similarly, we exploit the block MM framework to solve it. At it-

eration t + 1 , we first update μ and �, with ν fixed as ν( t ) , and

then update ν , with μ and � fixed as μ(t+1) and �(t+1) . The op-

timization of ν can be solved by one-dimensional search. For the

optimization of μ and �, according to (9) and (19) , we have 

l 
(
Y | μ, �, ν( t ) 

)
≥ Q 

(
μ, �, ν(t) | μ(t) , �(t) 

, ν(t) 
)

+ l 

(
Y | μ(t) , �(t) 

, ν(t) 
)

− Q 

(
μ(t) , �(t) 

, ν(t) | μ(t) , �(t) 
, ν(t) 

)
, 

(54)

therefore, at ( μ( t ) , �( t ) , ν( t ) ), l shrink ( Y | μ, �, ν( t ) ) is minorized by 

g shrink 
1 

(
μ, �| μ(t) , �(t) 

, ν(t) 
)

= Q 

(
μ, �, ν(t) | μ(t) , �(t) 

, ν(t) 
)

− αu 

(
μ, �, ν( t ) 

)
+ const. 

= 

n ∑ 

i =1 

{ 

−1 

2 

Tr 
(
E 

(
τi y i y 

T 
i 

)
�−1 

)
+ μT �−1 

E ( τi y i ) −
1 

2 

μT �−1 μE ( τi ) 

}
−n 

2 

log ( det ( �) ) − α

2 

( t − μ) 
T 

(
ν( t ) 

ν( t ) − 2 

�

)−1 

( t − μ) 

−α

2 

Tr 

( (
ν( t ) 

ν( t ) − 2 

�

)−1 

T 

) 

− α

2 

log det 

(
ν( t ) 

ν( t ) − 2 

�

)
+ const. 

(55)

b

Setting the gradient of g shrink 
1 

( μ, �| μ(t) , �(t) 
, ν(t) ) to zero gives

he closed-form update (56) and (57) in Algorithm 3 . 

lgorithm 3 Regularized robust estimation via block MM

RREBMM). 

) Initialize �( 0 ) as an arbitrarypositive definite matrix, μ( 0 ) asan

rbitrary vector, and ν( 0 ) as an arbitrary number 
(
ν( 0 ) ≥ ν−)

. 

) Iterate 

( t+1 ) = 

∑ n 
i =1 E ( τi ) ∑ n 

i =1 E ( τi ) + α ν(t) −2 

ν(t) 

∑ n 
i =1 E ( τi y i ) ∑ n 

i =1 E ( τi ) 
+ 

α ν(t) −2 

ν(t) ∑ n 
i =1 E ( τi ) + α ν(t) −2 

ν(t) 

t , (56) 

( t+1 ) = 

n 

n + α

1 

n 

n ∑ 

i =1 

{ 

E 

(
τi y i y 

T 
i 

)
− 2 E ( τi y i ) 

(
μ( t+1 ) 

)T 

+ E ( τi ) μ
( t+1 ) 

(
μ( t+1 ) 

)T 
} 

+ 

α

n + α

{ 

ν(t) − 2 

ν(t) 
T + 

ν(t) − 2 

ν(t) 

(
t − μ( t+1 ) 

)(
t − μ( t+1 ) 

)T 
} 

, 

(57) 

nd 

( t+1 ) = arg max 
ν≥ν−

l shrink 
(
Y | μ( t+1 ) , �( t+1 ) 

, ν
)
, (58)

here the expectations can be computed based on the method in

17]. 

We can see the update is a linear combination of the estimates

rom the samples and target. When α = 0 , the shrinkage estimator

educes to the previous nonshrinkage estimator (see Section 2.3 ),

nd when α → + ∞ , the shrinkage estimator reduces to the triv-

al case yielding the prior target. The term 

α
n + α ( ν

(t) −2 
ν(t) T + 

ν(t) −2 
ν(t) (t −

(t+1) )(t − μ(t+1) ) T ) helps to make �(t+1) well conditioned, and

hus, allows continuation of the iterative process. 

Even better, from (26) , at ( μ( t ) , �( t ) , ν( t ) ), l shrink ( Y | μ, �, ν( t ) ) is

lso minorized by 

g shrink 
2 

(
μ, �| μ(t) , �(t) 

, ν(t) 
)

= g 
(
μ, �| μ( t ) , �( t ) 

, ν( t ) 
)

−αu 

(
μ, �, ν( t ) 

)
+ const. 

= 

K ∑ 

k =1 

{ 

n k ∑ 

i = n k −1 +1 

−1 

2 

ω 

( t ) 
i 

(
y i, (p k ) 

− μ(p k ) 

)T (
�(p k ) 

)−1 (
y i, (p k ) 

− μ(p k ) 

)
−n k − n k −1 

2 

log det 
(
�(p k ) 

)} 

− α

2 

( t −μ) 
T 

(
ν( t ) 

ν( t ) − 2 

�

)−1 

( t − μ)

−α

2 

Tr 

( (
ν( t ) 

ν( t ) − 2 

�

)−1 

T 

) 

− α

2 

log det 

(
ν( t ) 

ν( t ) − 2 

�

)
+ const. 

(59)

Compared with the minorizing function g shrink 
1 

, g shrink 
2 

is a

ighter approximation of l shrink ( Y | μ, �, ν( t ) ), since g ( μ, �| μ( t ) ,
( t ) , ν( t ) ) is a tighter approximation of l ( Y | μ, �, ν( t ) ) than

he minorizing function in the ECME(O1). On the other hand,

 

shrink 
2 

( μ, �| μ(t) , �(t) 
, ν(t) ) is so complicated that we cannot max-

mize it directly. Luckily, after reparameterization using Lemma 1 ,

e can derive a closed-form maximizer. The maximizer is given

n Proposition 5 , and the resulting algorithm is summarized in

lgorithm 4 . Similar to Algorithm 1 , Algorithms 3 and 4 can also

e considered as penalized ECME algorithms. 
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Algorithm 4 Fast regularized robust estimation via block MM (FR- 

REBMM). 

1) Initialize �( 0 ) as an arbitrarypositive definite matrix, μ( 0 ) asan 

arbitrary vector, and ν( 0 ) as an arbitrary number 
(
ν( 0 ) ≥ ν−)

. 

2) Iterate 

μ( t+1 ) = 

(
H 

( t+1 ) 
)−T 

[ (
h 

( t+1 ) 
1 

)T ˜ y ( 
t ) 

1 
, . . . , 

(
h 

( t+1 ) 
p 

)T ˜ y ( 
t ) 

p 

] T 
, (60) 

�( t+1 ) = 

(
H 

( t+1 ) 
(
H 

( t+1 ) 
)T 

)−1 

, (61) 

and 

ν( t+1 ) = arg max 
ν≥ν−

l shrink 
(
Y | μ( t+1 ) , �( t+1 ) 

, ν
)
, (62) 

where H 

( t+1 ) is an upper triangular matrixwith the first j compo- 

nents of its jth column h 

( t+1 ) 
j 

given by (66), ̃  y ( 
t ) 

j 
given by (35). 
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Fig. 3. Objective value versus iteration. 
roposition 5. The minorizing function (26) is maximized by 

( t+1 ) = 

(
H 

( t+1 ) 
)−T 

[ (
h 

( t+1 ) 
1 

)T ˜ y ( 
t ) 

1 
, . . . , 

(
h 

( t+1 ) 
p 

)T ˜ y ( 
t ) 

p 

] T 
(63) 

nd 

( t+1 ) = 

(
H 

( t+1 ) 
(
H 

( t+1 ) 
)T 

)−1 

, (64) 

here, for j = 1 , 2 , . . . , p , 

 

 

( t ) 
j 

= 

	( t ) 
j 

ȳ ( 
t ) 

j 
+ α ν( t ) −2 

ν( t ) t ( j) 

	( t ) 
j 

+ α ν( t ) −2 
ν( t ) 

, (65) 

nd 

 

( t+1 ) 
j 

= 

(̃
 L ( 
t ) 

j 

)−T (
0 , . . . , 0 , 

√ 

n k ( j) + α
)T 

, (66) 

ith ̃  L (t) 
j 

( ̃  L (t) 
j 

) T being the lower triangular Cholesky decomposition for

 

 

( t ) 
j 

= 

α ν( t ) −2 
ν( t ) 	( t ) 

j 

(
ȳ ( 

t ) 
j 

− t ( j) 

)(
ȳ ( 

t ) 
j 

− t ( j) 

)T 

	( t ) 
j 

+ α ν( t ) −2 
ν( t ) 

+ S ( 
t ) 

j 
+ α

ν( t ) − 2 

ν( t ) 
T ( j) . 

(67) 

roof. See Appendix A.4 . �

.2. Computational cost 

The introduction of the regularization term does not lead

o much additional computational cost. For the RREBMM algo-

ithm, the per-iteration computational cost for μ(t+1) and �(t+1) 

s O(np 2 + 

∑ K 
i =1 (p 3 

k 
+ pp k )(n k − n k −1 ) + 

∑ K 
i =1 p 

2 p k ) , the same with

he ECME(O1). For FRREBMM algorithm, the per-iteration com-

utational cost is O(p 4 + 

∑ K 
i =1 p 

3 
k 
(n k − n k −1 )) , the same with the

REBMM algorithm. 

. Simulations 

To show the performance of the proposed regularized ro-

ust estimator and the proposed algorithms, we present some

umerical experimental results in this section. All experiments

ere conducted on a PC with a 3.20 GHz i5-4570 CPU and 8 GB

AM. The estimation performance is quantified by the normalized

ean square errors (NMSEs) defined as NMS E μ = 

E ‖ ̂ μ−μtrue ‖ 2 
‖ μtrue ‖ 2 and

MS E R = 

E ‖ ̂ R −R true ‖ 2 F 

‖ R true ‖ 2 , where ˆ μ and 

ˆ R = 

ˆ ν
ˆ ν−2 

ˆ � are the estimates for

F 
ean and covariance matrix. In all the synthetic data simulations,

he samples are drawn from the heavy-tailed distribution t p ( μtrue ,

true , v true ), where μtrue = 1 , �true is a Toeplitz covariance matrix

f the form ( �true ) i j = 0 . 8 | i − j| , and v true = 3 . The true covariance

s R true = 

νtrue 
νtrue −2 �true . 

.1. Comparison of the algorithms for robust estimation 

In this part, we compare the proposed FREBMM algorithm and

ts variant PX-FREBMM (i.e., Algorithms 1 and 2) with the exist-

ng ECME and PX-ECME algorithms in [13,16] for the robust es-

imation of the mean and covariance matrix from the monotone

ncomplete data. The stopping criteria for all the algorithms are
‖ �(t+1) −�(t) ‖ F 

‖ �(t) ‖ F 
< 10 −4 , 

‖ μ(t+1) −μ(t) ‖ 2 
‖ μ(t) ‖ 2 < 10 −4 , and 

| ν(t+1) −ν(t) | 
| ν(t) | < 10 −4 .

irst, we test the performance of the four algorithms on a mono-

one incomplete data set with p = 100 , n = 500 and k = 5 for 100

andom initial points. Table 1 displays the comparison in terms of

umbers of iterations required to converge, the CPU time cost, and

he estimation errors. The proposed FREBMM and PX-FREBMM al-

orithms achieve the same estimation accuracy with the ECME and

X-ECME algorithms using much fewer iterations and less time.

ig. 3 depicts the evolution curve of the objective value versus the

umber of iterations for a random initial point. The convergence

ates of the proposed FREBMM and PX-FREBMM algorithms domi-

ate the benchmarks. 

As discussed in Section 4.3 , the reason for the faster conver-

ence of the proposed algorithms is that the minorizing function

s tighter, since the proposed algorithms do not consider the miss-

ng values { y i ,mis } as latent variables, and have fewer latent vari-

bles than the benchmarks. Since the number of missing values

s decided by the missing rates (ϕ = 1 −
∑ K 

k =1 
(n k −n k −1 ) p k 

np ) and data

et size ( p, n ), we next test the computational complexity of the

our algorithms for data sets with different missing rates and sizes.

or a given set of p, n , and missing rate ϕ, we randomly generate

00 monotone incomplete data sets from t p ( μtrue , �true , v true ) and

est the four algorithms on these data sets. Note that number of

roups K is randomly generated for each data set. Fig. 4 shows the

verage running time versus different missing rates with the data

ize fixed as p = 100 and n = 500 . Fig. 5 shows the average run-

ing time versus different data sizes with the missing rate fixed as



286 J. Liu and D.P. Palomar / Signal Processing 165 (2019) 278–291 

Table 1 

Performance comparison of different algorithms. 

ECME PX-ECME FREBMM PX-FREBMM 

(proposed) (proposed) 

Average number of iterations 285 279 140 12 

Average CPU time in sec 119.90 117.00 56.42 4.71 

NMSE of ˆ μ 0.0023 0.0023 0.0023 0.0023 

NMSE of ˆ R 0.1263 0.1263 0.1263 0.1263 

Fig. 4. Average running time versus missing rates ϕ. 

Fig. 5. Average running time versus dimension p . 

 

 

 

 

 

 

 

 

 

Fig. 6. Estimation errors of the covariance ˆ R . 

m  

t  

t  

t  

k  

t  

s  

e  

f  

o  

t  

m  

d

c  

o  

w  

t  

e  

f  

M  

h  

w  

t  

c  

a

 

m  

W  

a  

a  

S  

e  

d  

w

ϕ = 20% (for convenience, we let n = 5 p). We can see that the pro-

posed PX-FREBMM algorithm is more than one order of magnitude

faster than the benchmarks for all the settings. 

6.2. Regularized robust estimation 

In this part, we show the performance of the proposed shrink-

age robust estimator in the small sample size regime. We consider

two classes of estimators: the estimators for the incomplete data

with the monotone missing-data pattern, which include the Stu-

dent’s t ML estimator, the shrinkage Gaussian estimator in [23] and

the proposed shrinkage Student’s t ML estimator, and the estimator

based on only complete samples, the shrinkage Student’s t ML esti-
ator in [21] . The shrinkage target for the covariance matrix is set

o be the identity matrix motivated by Ledoit and Wolf [18] , and

he target for the mean is set to be the sample median. Note that

he shrinkage target we use here does not depend on any prior

nowledge about the true parameter. As for the tuning parame-

er α of the proposed shrinkage estimator, we let ρ(α) = 

n 
n + α , and

earch for α
 that yields the shrinkage estimator with the small-

st NMSE with ρ in { 0 . 1 , 0 . 2 , . . . , 1 } . This is to eliminate the ef-

ect of parameter tuning. Since, in [23] , the authors only devel-

ped the shrinkage Gaussian estimator for the monotone data with

wo groups, we first test the performance of the estimators on

onotone incomplete data sets with two groups. We consider 100-

imensional monotone incomplete data sets, where there are n 1 
omplete samples in the first group and 50 samples in the sec-

nd group with only first 75 components observed. For a given n 1 ,

e randomly generate 100 monotone incomplete data sets from

 p ( μtrue , �true , v true ). Figs. 6 and 7 show the average estimation

rrors. The existing shrinkage Gaussian estimator is too inefficient

or heavy-tailed data sets, and the proposed shrinkage Student’s t

L estimator outperforms other estimators, since it considers the

eavy-tail, is well stabilized by the shrinkage, and makes use of

hole data set. Fig. 8 gives an example for the convergence of

he proposed algorithms RREBMM and FRREBMM. Both algorithms

onverge, and the FRREBMM algorithm is faster than the RREBMM

lgorithm, since its minorizing function is tighter. 

Then we test the performance of the proposed estimator on

onotone incomplete data sets with different numbers of groups.

e set p = 100 . For an incomplete data set with K groups, there

re 150 complete samples in the first group and 50 samples in

ny other k th group with the first 110 − 10 k components observed.

imilarly, a number of 100 incomplete data sets are generated for

ach setting. Figs. 9 and 10 show the average estimation errors for

ata sets with different K ’s. The proposed shrinkage estimator al-

ays provide more reliable estimates than other two estimators. 
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Fig. 7. Estimation errors of ˆ μ. 

Fig. 8. Objective value versus iteration. 

Fig. 9. Estimation errors of the covariance ˆ R . 

Fig. 10. Estimation errors of ˆ μ. 

 

t  

 

d  

t  

β

0  

s  

t  

t  

v  

a  

i  

w  

t  

β  

i  

w  

o  

t  

T  

d

 

b  

t  

l  

o  

s  

a  

t  

f  

s  

f  

l  

m  

c  

t  

o  

b  

o

s

Now we show the sensitivity of the proposed shrinkage es-

imator to the shrinkage target t and T . We set K = 2 , p = 100 ,

p 2 = 75 , n 1 = 100 , and n 2 = 150 . We first fix t as the sample me-

ian, and analyze the sensitivity to T . Table 2 lists the average es-

imation errors with T being a Toeplitz matrix with T i j = 3 β | i − j| ,
∈ { 0 . 1 , 0 . 2 , . . . , 0 . 7 } (the true covariance matrix (T true ) i j = 3 ∗

 . 8 | i − j| ). Then we fix T as the identity matrix, and analyze the

ensitivity to t . Table 3 lists the average estimation errors with

 = t1 , t ∈ { 0 . 1 , 0 . 2 , . . . , 0 . 9 } . The tables indicate that the estima-

ion accuracy increases as the prior target gets close to the true

alue. Even if the prior target is far from the true value, e.g., t = 0 . 1

nd β = 0 . 1 , the estimation error is still no worse than the ex-

sting nonshrinkage Student’s t ML estimator. The reason is that

hen t = 0 . 1 , the regularization parameter α
 is small, and the es-

imates are dominated by the information from samples, and when

= 0 . 1 , T is close to the indentity matrix, and this still helps

n improving the accuracy by shrinking the eigenvalues of ˆ R to-

ards to the center in the small sample regime. To summarize,

ne can expect that a more informative prior ( t, T ) close to the

rue value can lead to more accurate estimation. Even the prior ( t,

 ) is wrong, it still performs no worse than the nonshrinkage Stu-

ent’s t ML estimator given that α
 is well selected. 

In the last simulation, we apply the proposed shrinkage ro-

ust estimator for the monotone missing-data pattern to estimate

he covariance matrix for stocks with available histories of various

engths, and compare it with other different covariance estimators

n a real financial market data set. We consider 48 constituent

tocks of the Hang Seng Index, and download their dividend-

djusted monthly close prices from Jan. 1998 to Nov. 2017 from

he Bloomberg. Since different stocks went public via IPOs at dif-

erent times, the number of historical monthly log returns for each

tock varies from 86 to 239. These log returns can be considered as

ollowing the monotone missing-data pattern (see Fig. 11 for an il-

ustration) [25] . An important reason for estimating the covariance

atrix of stocks is to provide inputs into portfolio construction. As

onventionally done in the financial literature [21,33] , we compare

he performance of the covariance matrix estimators in the setup

f the minimum variance portfolio constructed using the estimates

ased on the historical log returns. The mathematical formulation

f the minimum variance portfolio construction problem is 

minimize 
w 

w 

T Rw 

ubject to 1 

T w = 1 , (68) 
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Table 2 

Average estimation errors of the proposed shrinkage estimator for different T . 

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Nonshrinkage 

NMSE of ˆ R 0.2186 0.1914 0.1680 0.1448 0.1183 0.0853 0.0444 0.5239 

Table 3 

Average estimation errors of the proposed shrinkage estimator for different t . 

t 0.1 0.2 0.3 0.4 0.5 

NMSE of ˆ μ 0.0077 0.0076 0.0075 0.0074 0.0073 

t 0.6 0.7 0.8 0.9 nonshrinkage 

NMSE of ˆ μ 0.0070 0.0067 0.0061 0.0042 0.0102 

Fig. 11. Monotone missing-data pattern in the log returns of Heng Seng Index con- 

stituent stocks. The blue parts are the observed values. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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where R is the estimated covariance matrix of the stocks and w

denotes the weights to be allocated on different stocks [21] . 
Fig. 12. Risk (variance) comparison of portfolio constructed based on different covaria

portfolio variances obtained by monotone shrinkage t estimator compared with that of co
Let us regard Feb. 1998 as the first month. At a particular

onth n , for nonshrinkage estimators, we use the previous n − 1

onthly returns to estimate the covariance matrix R , and find the

ptimal allocation weights w 


 based on the estimate. For shrinkage

stimators, we first divide the previous n − 1 monthly returns into

wo parts with the first n − 1 − n val monthly returns as the training

ata to estimate the covariance R and find the optimal allocation

eights w for different regularization parameters α, and the re-

aining n val monthly returns as the validation data for selecting

he optimal α
 that yields the smallest Var ({ w 

T r t } t= n −n val , ... ,n −1 ) .

hen we use the overall n − 1 monthly returns to estimate the co-

ariance matrix using α
 , and compute the corresponding optimal

llocation weights w 


 . 

After obtaining the allocation weights w 


 for all the estimators,

e construct the portfolio using w 


 , and compute the portfolio

ariance in the next n test months. This estimation and test proce-

ure is repeated from n = 187 to 227. In the simulation, we set

(α) = 

n 
n + α , and search for α
 with ρ( α) in { 0 . 1 , 0 . 2 , . . . , 1 } . The

hrinkage target for mean and covariance are sample median and

dentity matrix, respectively. The parameters are set to be n val = 12

nd n test = 12 . 

Two classes of estimators are considered: the estimators for the

ncomplete data with the monotone missing-data pattern, which

nclude the Gaussian ML estimator, the Student’s t ML estimator,

nd the proposed shrinkage Student’s t ML estimator, and the es-

imators based on only complete samples, which include sample

verage, the Student’s t ML estimator, and shrinkage Student’s t

stimator. Fig. 12 compares the risk (variance) of the minimum

ariance portfolio constructed based on different covariance esti-

ators. The shrinkage estimators yield lower risk than the non-

hrinkage estimators, and the proposed shrinkage Student’s t esti-

ator for the monotone missing-data pattern performs better than

he existing shrinkage estimator Student’s t based only on com-

lete samples, since it makes good use of all the data. 
nce estimators (the numbers in the parentheses are the percentage decreases of 

mplete shrinkage t estimator). 



J. Liu and D.P. Palomar / Signal Processing 165 (2019) 278–291 289 

7

 

m  

t  

F  

f  

o  

t  

t  

S  

p  

t  

t  

c

 

m  

e  

a  

e  

a  

t

D

 

c  

i

A

 

s

A

A

 

l  

Q  

b  

d

Q Z 2 | Y , Z 1 , θ
( t ) 

) p 
(
Y , Z 1 , Z 2 | θ

)
p 

(
Z 2 | Y , Z 1 , θ

( t ) 
)d Z 2 

⎞ ⎠ p 

(
Z 1 | Y , θ( t ) 

)
d Z 1 

 Z 2 

⎞ ⎠ p 

(
Z 1 | Y , θ( t ) 

)
d Z 1 

 1 , θ
( t ) 

)
p 

(
Z 1 | Y , θ( t ) 

)
d Z 2 d Z 1 

 θ( t ) 
)
d Z 2 d Z 1 

 ∫ 
log 

(
p 

(
Y , Z 1 , Z 2 | θ( t ) 

))
p 

(
Z 1 , Z 2 | Y , θ( t ) 

)
d Z 2 d Z 1 

 Q Z 1 Z 2 

(
θ| θ( t ) 

)
− Q Z 1 Z 2 

(
θ( t ) | θ( t ) 

)
+ Q Z 1 

(
θ( t ) | θ( t ) 

)
. (A.1) 

w

Q

i

g

A

(

C

a

R

N

R

w  

R  

=

=

=

. Conclusions 

In this paper, we have considered the robust estimation of the

ean and covariance matrix for incomplete data with the mono-

one missing-data pattern. The contribution of his paper is twofold.

irst, we have derived two algorithms based on the MM framework

or the existing Student’s t ML estimator. The minorizing function

f the proposed algorithms achieves a much tighter approxima-

ion of the objective function than that of the existing algorithms,

herefore, the proposed algorithms enjoy faster convergence rates.

econdly, we have proposed a regularized estimator by adding a

enalty term to the original Student’s t log-likelihood function. And

wo optimization algorithms have been designed for it based on

he MM framework. The proposed regularized estimator can work

onsiderably better in small sample size regime. 

Although this paper focuses on the incomplete data with the

onotone missing-data pattern, the above proposed regularized

stimator and algorithms can be extended to incomplete data with

ny arbitrary missing-data pattern. Similarly, we can use the ML

stimator assuming the samples follow a Student’s t -distribution,

nd regularize the estimator by shrinking the estimator to a prior

arget. 
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ppendix A. Proof 

.1. Proof for Proposition 2 

Let us denote by Q Z 1 
( θ| θ(t) 

) the expectation of complete data

og-likelihood with Z 1 considered as the latent variable, and by

 Z 1 Z 2 
( θ| θ(t) 

) the expectation of complete data log-likelihood with

oth Z 1 and Z 2 considered as the latent variables. According the

efinition, we have 

 Z 1 

(
θ| θ( t ) 

)
= 

∫ 
log 

(
p 
(
Y , Z 1 | θ

))
p 

(
Z 1 | Y , θ( t ) 

)
d Z 1 = 

∫ 
log 

⎛ ⎝ 

∫ 
p 

(

≥
∫ ⎛ ⎝ 

∫ 
p 

(
Z 2 | Y , Z 1 , θ

( t ) 
)

log 

⎛ ⎝ 

p 
(
Y , Z 1 , Z 2 | θ

)
p 

(
Z 2 | Y , Z 1 , θ

( t ) 
)
⎞ ⎠ d

= 

∫ ∫ 
log 

( 

p 
(
Y , Z 1 , Z 2 | θ

)
p 

(
Z 2 | Y , Z 1 , θ

( t ) 
)) 

p 

(
Z 2 | Y , Z

= 

∫ ∫ 
log 

⎛ ⎝ 

p 
(
Y , Z 1 , Z 2 | θ

)
p 

(
Y , Z 1 | θ( t ) 

)
p 

(
Y , Z 1 , Z 2 | θ( t ) 

)
⎞ ⎠ p 

(
Z 1 , Z 2 | Y ,

= 

∫ ∫ 
log 

(
p 
(
Y , Z 1 , Z 2 | θ

))
p 

(
Z 1 , Z 2 | Y , θ( t ) 

)
d Z 2 d Z 1 −

∫
+ 

∫ ∫ 
log 

(
p 

(
Y , Z 1 | θ( t ) 

))
p 

(
Z 1 , Z 2 | Y , θ( t ) 

)
d Z 2 d Z 1 =
here the inequality is from the Jensen’s inequality. Therefore, 

 Z 1 

(
θ| θ( t ) 

)
− Q Z 1 

(
θ( t ) | θ( t ) 

)
+ l 

(
Y | θ( t ) 

)
≥ Q Z 1 Z 2 

(
θ| θ( t ) 

)
− Q Z 1 Z 2 

(
θ( t ) | θ( t ) 

)
+ l 

(
Y | θ( t ) 

)
, (A.2) 

.e., 

 Z 1 

(
θ| θ( t ) 

)
≥ g Z 1 Z 2 

(
θ| θ( t ) 

)
. (A.3) 

.2. Proof for Proposition 2 

Let us define, for j = 1 , 2 , . . . , p , the weighted covariance of y i ,( j ) 
first j components) in the k ( j )th group around the mean μ( j ) , 

 

( t ) 
j ( μ) = 

n k ( j) ∑ 

i = n k ( j) −1 +1 

ω 

( t ) 
i 

(
y i, ( j) − μ( j) 

)(
y i, ( j) − μ( j) 

)
T , (A.4) 

nd the weighted covariance of y i ,( j ) in the first k ( j ) groups, 

 

( t ) 
j ( μ) = 

n k ( j) ∑ 

i =1 

ω 

( t ) 
i 

(
y i, ( j) − μ( j) 

)(
y i, ( j) − μ( j) 

)
T . (A.5) 

ote that 

 

( t ) 
j ( μ) = 

k ( j) ∑ 

k =1 

[
C 

( t ) 
p k ( μ) 

]
( j) 

, (A.6) 

here [ C 

(t) 
p k 

( μ)] ( j) is the upper left j × j submatrix of C 

(t) 
j 

( μ) , and

 

( t ) 
j ( μ) = S ( 

t ) 
j 

+ 	( t ) 
j 

(
μ( j) − ȳ ( 

t ) 
j 

)(
μ( j) − ȳ ( 

t ) 
j 

)
T . (A.7)

Substituting (29) and (A.4) into g ( μ, �| μ( t ) , �( t ) , ν( t ) ) gives 

g 
(
μ, H | μ( t ) , �( t ) 

, ν( t ) 
)

 

K ∑ 

k =1 

{ 

−1 

2 

Tr 
(
H 

T 
(p k ) 

C 

( t ) 
p k ( μ) H (p k ) 

)
+ 

n k − n k −1 

2 

log det 
(
H (p k ) 

H 

T 
(p k ) 

)} 

 − 1 

2 

K ∑ 

k =1 

p k ∑ 

j=1 

h 

T 
j 

[
C 

( t ) 
p k ( μ) 

]
( j) 

h j + 

K ∑ 

k =1 

( n k − n k −1 ) log det 
(
H (p k ) 

)
 − 1 

2 

p ∑ 

j=1 

k ( j) ∑ 

k =1 

h 

T 
j 

[
C 

( t ) 
p k ( μ) 

]
( j) 

h j + 

K ∑ 

k =1 

{ 

( n k − n k −1 ) 

p k ∑ 

j=1 

log 
(
h j, j 

)} 
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where the constant in g ( μ, �| μ( t ) , �( t ) , ν( t ) ) is ignored. 

A.3. Proof for Proposition 3 
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